A multiobjective memetic algorithm with particle swarm optimization and Q-learning-based local search for energy-efficient distributed heterogeneous hybrid flow-shop scheduling problem
Most existing distributed hybrid flow-shop scheduling problems (DHFSPs) assume identical shops and lack consideration of heterogeneous shops. This study focuses on energy-efficient heterogeneous DHFSP. A multiobjective memetic algorithm with particle swarm optimization and Q-learning-based local sea...
Uloženo v:
| Vydáno v: | Expert systems with applications Ročník 237; s. 121570 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.03.2024
|
| Témata: | |
| ISSN: | 0957-4174, 1873-6793 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Most existing distributed hybrid flow-shop scheduling problems (DHFSPs) assume identical shops and lack consideration of heterogeneous shops. This study focuses on energy-efficient heterogeneous DHFSP. A multiobjective memetic algorithm with particle swarm optimization and Q-learning-based local search is proposed in order to optimize both makespan and total energy consumption. Particle swarm optimization with multi-group is specifically designed as a global search strategy to improve the fast convergence performance of solutions in multi-direction of Pareto front. To improve the problem-specific knowledge search, two local search strategies are designed to further improve the quality and diversity of solutions. In addition, Q-learning is utilized to guide variable neighborhood search to better balance the exploration and exploitation of algorithms. This study investigates the effect of parameter setting and conducts extensive numerical tests. The comparative results and statistical analysis demonstrate the superior convergence and distribution performance of the proposed algorithm.
•Multi-group PSO as global search enhances multi-direction convergence of PF.•Two local search strategies cooperate with particle swarm optimization.•Inter-factory local search with insert and swap between critical factories.•Intra-factory local search with Q-learning and VNS within factories.•Two initialization methods increase the diversity of population. |
|---|---|
| AbstractList | Most existing distributed hybrid flow-shop scheduling problems (DHFSPs) assume identical shops and lack consideration of heterogeneous shops. This study focuses on energy-efficient heterogeneous DHFSP. A multiobjective memetic algorithm with particle swarm optimization and Q-learning-based local search is proposed in order to optimize both makespan and total energy consumption. Particle swarm optimization with multi-group is specifically designed as a global search strategy to improve the fast convergence performance of solutions in multi-direction of Pareto front. To improve the problem-specific knowledge search, two local search strategies are designed to further improve the quality and diversity of solutions. In addition, Q-learning is utilized to guide variable neighborhood search to better balance the exploration and exploitation of algorithms. This study investigates the effect of parameter setting and conducts extensive numerical tests. The comparative results and statistical analysis demonstrate the superior convergence and distribution performance of the proposed algorithm.
•Multi-group PSO as global search enhances multi-direction convergence of PF.•Two local search strategies cooperate with particle swarm optimization.•Inter-factory local search with insert and swap between critical factories.•Intra-factory local search with Q-learning and VNS within factories.•Two initialization methods increase the diversity of population. |
| ArticleNumber | 121570 |
| Author | Li, Chen Zhang, Wenqiang Zhang, Guohui Gen, Mitsuo Yang, Weidong |
| Author_xml | – sequence: 1 givenname: Wenqiang orcidid: 0000-0002-8214-0693 surname: Zhang fullname: Zhang, Wenqiang email: zhangwq@haut.edu.cn organization: College of Information Science and Engineering, Henan University of Technology, China – sequence: 2 givenname: Chen surname: Li fullname: Li, Chen email: lichen_haut@163.com organization: College of Information Science and Engineering, Henan University of Technology, China – sequence: 3 givenname: Mitsuo orcidid: 0000-0002-3670-1357 surname: Gen fullname: Gen, Mitsuo email: gen@flsi.or.jp organization: Fuzzy Logic Systems Institute/Tokyo University of Science, Japan – sequence: 4 givenname: Weidong surname: Yang fullname: Yang, Weidong email: mengguyang@163.com organization: Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, China – sequence: 5 givenname: Guohui orcidid: 0000-0001-9143-2922 surname: Zhang fullname: Zhang, Guohui email: zgh_hust@qq.com organization: School of Management Engineering, Zhengzhou University of Aeronautics, China |
| BookMark | eNp9kc2KFDEQgIOs4OzqC3jKC2RM0jOdHvCyLOoKCyLoOeSnMl1DutMkmR3GJ_PxzDiePOylCir1VVH5bsnNnGYg5L3ga8FF_-GwhnIya8lltxZSbBV_RVZiUB3r1a67ISu-2yq2EWrzhtyWcuBcKM7Vivy-p9MxVkz2AK7iM9AJJqjoqIn7lLGOEz21SBeTWzUCbXvyRNNSccJfppEzNbOn31kEk2ec98yaAp7G5EykpRXdSEPKFGbI-zODENAhzJV6LDWjPdbWPUKFnPatJx0LHc82o6chphMrY1pocSP4Y2zT6ZKTjTC9Ja-DiQXe_ct35OfnTz8eHtnTty9fH-6fmOs4ryxICdy6AIPlxg6b7Vb1wnoPSlg5uPbq-74LG--lsE44P8BgrFdhx6V0wXR3ZLjOdTmVkiFoh_Xv2TUbjFpwfTGgD_piQF8M6KuBhsr_0CXjZPL5ZejjFYJ21DNC1uXyWw485mZI-4Qv4X8Ai_epzw |
| CitedBy_id | crossref_primary_10_1007_s12293_025_00456_4 crossref_primary_10_1109_TEVC_2024_3443874 crossref_primary_10_1016_j_cie_2025_110917 crossref_primary_10_1016_j_engappai_2023_107818 crossref_primary_10_1016_j_swevo_2025_102050 crossref_primary_10_1002_cpe_70090 crossref_primary_10_1016_j_eswa_2024_124349 crossref_primary_10_1109_TEVC_2024_3399314 crossref_primary_10_1007_s13369_024_09429_0 crossref_primary_10_1016_j_engappai_2024_109915 crossref_primary_10_1016_j_asoc_2025_113475 crossref_primary_10_1080_00207543_2025_2553820 crossref_primary_10_1016_j_cor_2025_107267 crossref_primary_10_1016_j_swevo_2025_101996 crossref_primary_10_1109_TSMC_2024_3488205 crossref_primary_10_1016_j_eswa_2024_125866 crossref_primary_10_1007_s12190_024_02364_1 crossref_primary_10_1007_s11227_025_06938_z crossref_primary_10_3390_jmse13061153 crossref_primary_10_1109_TIM_2024_3453320 crossref_primary_10_3390_electronics12234732 crossref_primary_10_1016_j_swevo_2024_101625 crossref_primary_10_1080_0305215X_2025_2519637 crossref_primary_10_1016_j_asoc_2024_112689 crossref_primary_10_1016_j_compeleceng_2024_109780 crossref_primary_10_3390_pr13092930 crossref_primary_10_1016_j_eswa_2025_128198 crossref_primary_10_1016_j_swevo_2025_102015 crossref_primary_10_3390_systems13030170 crossref_primary_10_1016_j_swevo_2025_102035 crossref_primary_10_1016_j_cor_2024_106919 crossref_primary_10_1016_j_engappai_2025_110882 crossref_primary_10_1016_j_aej_2025_05_071 crossref_primary_10_1016_j_engappai_2025_111771 crossref_primary_10_1016_j_ejor_2025_07_055 crossref_primary_10_1016_j_swevo_2023_101455 crossref_primary_10_1016_j_swevo_2025_101991 crossref_primary_10_1016_j_plrev_2025_08_007 crossref_primary_10_1007_s12351_024_00844_7 crossref_primary_10_1016_j_engappai_2024_109688 crossref_primary_10_1080_00207543_2024_2357740 crossref_primary_10_3233_JIFS_238627 crossref_primary_10_1007_s00158_025_04053_4 crossref_primary_10_1016_j_engappai_2024_109851 crossref_primary_10_26599_TST_2024_9010128 crossref_primary_10_1016_j_engappai_2025_111187 crossref_primary_10_1016_j_cor_2025_107079 crossref_primary_10_1038_s41598_025_02218_1 crossref_primary_10_1016_j_eswa_2024_124194 crossref_primary_10_1016_j_eswa_2025_127247 crossref_primary_10_1016_j_eswa_2024_125002 crossref_primary_10_1016_j_swevo_2024_101686 crossref_primary_10_1016_j_swevo_2025_102158 |
| Cites_doi | 10.1016/j.knosys.2023.110309 10.1016/j.eswa.2022.117256 10.1109/TEVC.2022.3150771 10.1109/TETCI.2020.3022372 10.1016/j.swevo.2011.02.002 10.26599/TST.2021.9010007 10.1016/j.eswa.2019.113151 10.1109/TEVC.2011.2132725 10.1016/j.cie.2020.106778 10.1007/s10845-013-0814-2 10.3934/mbe.2022410 10.1016/j.swevo.2016.06.002 10.1016/j.eswa.2020.113216 10.1080/00207543.2020.1780333 10.1016/j.omega.2019.102117 10.1016/j.cor.2019.05.002 10.1109/TASE.2021.3119353 10.1016/j.eswa.2023.119805 10.1016/j.eswa.2021.115453 10.1016/j.cie.2018.09.007 10.1016/j.knosys.2019.104894 10.1109/TSMC.2015.2416127 10.1109/TEVC.2021.3106168 10.1016/j.cie.2019.03.019 10.1016/S0377-2217(97)00423-2 10.1016/j.ejor.2004.06.038 10.1016/j.knosys.2020.105527 10.1016/j.eswa.2017.09.032 10.1109/ACCESS.2019.2917273 10.1016/j.engappai.2016.04.005 10.1080/19942060.2018.1517052 10.23919/CSMS.2021.0017 10.1109/ACCESS.2020.2996305 10.1016/j.cor.2021.105400 10.1007/s10845-014-0890-y 10.1016/j.ejor.2014.07.004 10.1016/j.engappai.2020.103540 10.1016/j.knosys.2020.105536 10.1080/0305215X.2019.1674295 10.1016/j.ejor.2020.07.059 10.1016/j.ejor.2009.01.008 10.1007/s12293-022-00364-x 10.1016/j.swevo.2022.101190 10.1016/j.eswa.2022.119151 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.eswa.2023.121570 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2023_121570 S0957417423020729 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET WUQ XPP ZMT ~HD |
| ID | FETCH-LOGICAL-c300t-f22e0bcfe8b0ab8455761bdde71b28c22ed663f4dd21bc1cd8e8abd7f9022cfa3 |
| ISICitedReferencesCount | 64 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001084350400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sat Nov 29 07:08:00 EST 2025 Tue Nov 18 21:32:25 EST 2025 Fri Feb 23 02:35:23 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Memetic algorithm Q-learning Energy-efficient Particle swarm optimization Hybrid flow-shop scheduling Heterogeneous distributed scheduling |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-f22e0bcfe8b0ab8455761bdde71b28c22ed663f4dd21bc1cd8e8abd7f9022cfa3 |
| ORCID | 0000-0002-3670-1357 0000-0002-8214-0693 0000-0001-9143-2922 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_eswa_2023_121570 crossref_primary_10_1016_j_eswa_2023_121570 elsevier_sciencedirect_doi_10_1016_j_eswa_2023_121570 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-01 2024-03-00 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Fernandez-Viagas, Perez-Gonzalez, Framinan (b14) 2019; 109 Zhang, Li, Gen, Yang, Zhang, Zhang (b42) 2022; 19 Chen, Yang, Li, Wang (b8) 2020; 149 Gholami, Sun (b15) 2023 Shao, Shao, Pi (b26) 2021; 19 Mazyavkina, Sviridov, Ivanov, Burnaev (b21) 2021; 134 Zhang, Xing, Zhang, He (b46) 2020; 8 Jiang, Wang, Wang (b18) 2021; 26 Hsu, Kao, Lai (b17) 2016; 53 Zhang, Wang, Yang, Gen (b44) 2019; 130 Xiong, Xing, Wang (b36) 2015; 240 Behnamian, Fatemi Ghomi (b2) 2016; 27 Wang, Xu, Chau, Xu (b34) 2020; 150 Chen, Ong, Lim, Tan (b7) 2011; 15 Shao, Shao, Pi (b27) 2021; 183 Cai, Lei, Li (b4) 2021; 59 Diaz, López-Ibáñez (b13) 2021; 289 Shao, Shao, Pi (b29) 2023; 214 Wu, Che (b35) 2020; 94 Sutton, Barto (b30) 1999; 17 Wang, Wang (b33) 2021; 26 Hao, Li, Du, Song, Duan, Zhang (b16) 2019; 7 Qin, Han, Liu, Li, Pan (b23) 2022; 201 Zhang, Yang, Zhang, Gen (b47) 2020; 145 Yang, Xu (b37) 2020 Yu, Gen (b39) 2010 Deng, Wang (b11) 2017; 32 Zhang, Xing (b45) 2018; 125 Lei, Wang (b19) 2020; 52 Zhang, Liu, Wang, Yu, Xing (b43) 2022; 26 Shao, Shao, Pi (b28) 2022; 75 Liu, Li, Gao, Wang (b20) 2022; 14 Zhang, Hou, Li, Yang, Gen (b41) 2021; 1 Shao, Shao, Pi (b25) 2020; 194 Cai, Zhou, Lei (b6) 2020; 38 De Giovanni, Pezzella (b10) 2010; 200 Ruiz, Maroto (b24) 2006; 169 Ying, Lin (b38) 2018; 92 Ali Ghorbani, Kazempour, Chau, Shamshirband, Taherei Ghazvinei (b1) 2018; 12 Brah, Loo (b3) 1999; 113 Derrac, García, Molina, Herrera (b12) 2011; 1 Zheng, Wang, Wang (b48) 2020; 194 Zhang, Gen, Jo (b40) 2014; 25 Cui, Li, Gao (b9) 2023 Meng, Pan, Wang (b22) 2019; 184 Wang, Wang (b32) 2020; 5 Cai, Zhou, Lei (b5) 2020; 90 Wang, Wang (b31) 2015; 46 Cai (10.1016/j.eswa.2023.121570_b6) 2020; 38 Shao (10.1016/j.eswa.2023.121570_b25) 2020; 194 Wang (10.1016/j.eswa.2023.121570_b31) 2015; 46 Xiong (10.1016/j.eswa.2023.121570_b36) 2015; 240 Zhang (10.1016/j.eswa.2023.121570_b43) 2022; 26 Cui (10.1016/j.eswa.2023.121570_b9) 2023 Chen (10.1016/j.eswa.2023.121570_b7) 2011; 15 Deng (10.1016/j.eswa.2023.121570_b11) 2017; 32 Zhang (10.1016/j.eswa.2023.121570_b41) 2021; 1 Cai (10.1016/j.eswa.2023.121570_b4) 2021; 59 Shao (10.1016/j.eswa.2023.121570_b28) 2022; 75 Hsu (10.1016/j.eswa.2023.121570_b17) 2016; 53 Ying (10.1016/j.eswa.2023.121570_b38) 2018; 92 Zhang (10.1016/j.eswa.2023.121570_b42) 2022; 19 Derrac (10.1016/j.eswa.2023.121570_b12) 2011; 1 Zhang (10.1016/j.eswa.2023.121570_b47) 2020; 145 Hao (10.1016/j.eswa.2023.121570_b16) 2019; 7 Yang (10.1016/j.eswa.2023.121570_b37) 2020 Cai (10.1016/j.eswa.2023.121570_b5) 2020; 90 Zheng (10.1016/j.eswa.2023.121570_b48) 2020; 194 Qin (10.1016/j.eswa.2023.121570_b23) 2022; 201 Yu (10.1016/j.eswa.2023.121570_b39) 2010 Wu (10.1016/j.eswa.2023.121570_b35) 2020; 94 Lei (10.1016/j.eswa.2023.121570_b19) 2020; 52 Shao (10.1016/j.eswa.2023.121570_b29) 2023; 214 Chen (10.1016/j.eswa.2023.121570_b8) 2020; 149 Zhang (10.1016/j.eswa.2023.121570_b44) 2019; 130 De Giovanni (10.1016/j.eswa.2023.121570_b10) 2010; 200 Wang (10.1016/j.eswa.2023.121570_b32) 2020; 5 Wang (10.1016/j.eswa.2023.121570_b33) 2021; 26 Wang (10.1016/j.eswa.2023.121570_b34) 2020; 150 Ruiz (10.1016/j.eswa.2023.121570_b24) 2006; 169 Ali Ghorbani (10.1016/j.eswa.2023.121570_b1) 2018; 12 Behnamian (10.1016/j.eswa.2023.121570_b2) 2016; 27 Zhang (10.1016/j.eswa.2023.121570_b46) 2020; 8 Brah (10.1016/j.eswa.2023.121570_b3) 1999; 113 Meng (10.1016/j.eswa.2023.121570_b22) 2019; 184 Zhang (10.1016/j.eswa.2023.121570_b40) 2014; 25 Liu (10.1016/j.eswa.2023.121570_b20) 2022; 14 Diaz (10.1016/j.eswa.2023.121570_b13) 2021; 289 Sutton (10.1016/j.eswa.2023.121570_b30) 1999; 17 Shao (10.1016/j.eswa.2023.121570_b27) 2021; 183 Jiang (10.1016/j.eswa.2023.121570_b18) 2021; 26 Fernandez-Viagas (10.1016/j.eswa.2023.121570_b14) 2019; 109 Gholami (10.1016/j.eswa.2023.121570_b15) 2023 Mazyavkina (10.1016/j.eswa.2023.121570_b21) 2021; 134 Zhang (10.1016/j.eswa.2023.121570_b45) 2018; 125 Shao (10.1016/j.eswa.2023.121570_b26) 2021; 19 |
| References_xml | – volume: 184 year: 2019 ident: b22 article-title: A distributed permutation flowshop scheduling problem with the customer order constraint publication-title: Knowledge-Based Systems – volume: 19 start-page: 3379 year: 2021 end-page: 3394 ident: b26 article-title: An ant colony optimization behavior-based MOEA/D for distributed heterogeneous hybrid flow shop scheduling problem under nonidentical time-of-use electricity tariffs publication-title: IEEE Transactions on Automation Science and Engineering – volume: 8 start-page: 96115 year: 2020 end-page: 96128 ident: b46 article-title: Memetic algorithm with meta-lamarckian learning and simplex search for distributed flexible assembly permutation flowshop scheduling problem publication-title: IEEE Access – volume: 92 start-page: 132 year: 2018 end-page: 141 ident: b38 article-title: Minimizing makespan for the distributed hybrid flowshop scheduling problem with multiprocessor tasks publication-title: Expert Systems with Applications – volume: 53 start-page: 140 year: 2016 end-page: 154 ident: b17 article-title: Agent-based fuzzy constraint-directed negotiation mechanism for distributed job shop scheduling publication-title: Engineering Applications of Artificial Intelligence – volume: 200 start-page: 395 year: 2010 end-page: 408 ident: b10 article-title: An improved genetic algorithm for the distributed and flexible job-shop scheduling problem publication-title: European Journal of Operational Research – volume: 109 start-page: 77 year: 2019 end-page: 88 ident: b14 article-title: Efficiency of the solution representations for the hybrid flow shop scheduling problem with makespan objective publication-title: Computers & Operations Research – volume: 183 year: 2021 ident: b27 article-title: Multi-objective evolutionary algorithm based on multiple neighborhoods local search for multi-objective distributed hybrid flow shop scheduling problem publication-title: Expert Systems with Applications – volume: 1 start-page: 176 year: 2021 end-page: 197 ident: b41 article-title: Multidirection update-based multiobjective particle swarm optimization for mixed no-idle flow-shop scheduling problem publication-title: Complex System Modeling and Simulation – volume: 94 year: 2020 ident: b35 article-title: Energy-efficient no-wait permutation flow shop scheduling by adaptive multi-objective variable neighborhood search publication-title: Omega – volume: 14 start-page: 193 year: 2022 end-page: 209 ident: b20 article-title: A multiobjective memetic algorithm for integrated process planning and scheduling problem in distributed heterogeneous manufacturing systems publication-title: Memetic Computing – volume: 194 year: 2020 ident: b48 article-title: A cooperative coevolution algorithm for multi-objective fuzzy distributed hybrid flow shop publication-title: Knowledge-Based Systems – volume: 26 start-page: 646 year: 2021 end-page: 663 ident: b18 article-title: Decomposition-based multi-objective optimization for energy-aware distributed hybrid flow shop scheduling with multiprocessor tasks publication-title: Tsinghua Science and Technology – volume: 75 year: 2022 ident: b28 article-title: A network memetic algorithm for energy and labor-aware distributed heterogeneous hybrid flow shop scheduling problem publication-title: Swarm and Evolutionary Computation – volume: 46 start-page: 139 year: 2015 end-page: 149 ident: b31 article-title: An estimation of distribution algorithm-based memetic algorithm for the distributed assembly permutation flow-shop scheduling problem publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – volume: 19 start-page: 8833 year: 2022 end-page: 8865 ident: b42 article-title: Multiobjective particle swarm optimization with direction search and differential evolution for distributed flow-shop scheduling problem publication-title: Mathematical Biosciences and Engineering – volume: 27 start-page: 231 year: 2016 end-page: 249 ident: b2 article-title: A survey of multi-factory scheduling publication-title: Journal of Intelligent Manufacturing – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: b12 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm and Evolutionary Computation – volume: 52 start-page: 1461 year: 2020 end-page: 1474 ident: b19 article-title: Solving distributed two-stage hybrid flowshop scheduling using a shuffled frog-leaping algorithm with memeplex grouping publication-title: Engineering Optimization – volume: 90 year: 2020 ident: b5 article-title: Dynamic shuffled frog-leaping algorithm for distributed hybrid flow shop scheduling with multiprocessor tasks publication-title: Engineering Applications of Artificial Intelligence – volume: 26 start-page: 461 year: 2021 end-page: 475 ident: b33 article-title: A cooperative memetic algorithm with learning-based agent for energy-aware distributed hybrid flow-shop scheduling publication-title: IEEE Transactions on Evolutionary Computation – volume: 150 year: 2020 ident: b34 article-title: Yin-yang firefly algorithm based on dimensionally Cauchy mutation publication-title: Expert Systems with Applications – volume: 240 start-page: 338 year: 2015 end-page: 354 ident: b36 article-title: Scheduling a hybrid assembly-differentiation flowshop to minimize total flow time publication-title: European Journal of Operational Research – volume: 289 start-page: 1209 year: 2021 end-page: 1222 ident: b13 article-title: Incorporating decision-maker’s preferences into the automatic configuration of bi-objective optimisation algorithms publication-title: European Journal of Operational Research – volume: 7 start-page: 66879 year: 2019 end-page: 66894 ident: b16 article-title: Solving distributed hybrid flowshop scheduling problems by a hybrid brain storm optimization algorithm publication-title: IEEE Access – year: 2010 ident: b39 article-title: Introduction to evolutionary algorithms – volume: 169 start-page: 781 year: 2006 end-page: 800 ident: b24 article-title: A genetic algorithm for hybrid flowshops with sequence dependent setup times and machine eligibility publication-title: European Journal of Operational Research – volume: 194 year: 2020 ident: b25 article-title: Modeling and multi-neighborhood iterated greedy algorithm for distributed hybrid flow shop scheduling problem publication-title: Knowledge-Based Systems – volume: 113 start-page: 113 year: 1999 end-page: 122 ident: b3 article-title: Heuristics for scheduling in a flow shop with multiple processors publication-title: European Journal of Operational Research – volume: 17 start-page: 229 year: 1999 end-page: 235 ident: b30 article-title: Reinforcement learning: An introduction publication-title: Robotica – year: 2023 ident: b15 article-title: Toward automated algorithm configuration for distributed hybrid flow shop scheduling with multiprocessor tasks publication-title: Knowledge-Based Systems – volume: 38 start-page: 3189 year: 2020 end-page: 3199 ident: b6 article-title: Fuzzy distributed two-stage hybrid flow shop scheduling problem with setup time: Collaborative variable search publication-title: Journal of Intelligent & Fuzzy Systems – volume: 149 year: 2020 ident: b8 article-title: A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem publication-title: Computers & Industrial Engineering – year: 2023 ident: b9 article-title: An improved multi-population genetic algorithm with a greedy job insertion inter-factory neighborhood structure for distributed heterogeneous hybrid flow shop scheduling problem publication-title: Expert Systems with Applications – volume: 26 start-page: 1043 year: 2022 end-page: 1057 ident: b43 article-title: Distributed co-evolutionary memetic algorithm for distributed hybrid differentiation flowshop scheduling problem publication-title: IEEE Transactions on Evolutionary Computation – volume: 130 start-page: 661 year: 2019 end-page: 670 ident: b44 article-title: Hybrid multiobjective evolutionary algorithm based on differential evolution for flow shop scheduling problems publication-title: Computers & Industrial Engineering – volume: 125 start-page: 423 year: 2018 end-page: 433 ident: b45 article-title: Memetic social spider optimization algorithm for scheduling two-stage assembly flowshop in a distributed environment publication-title: Computers & Industrial Engineering – volume: 5 start-page: 947 year: 2020 end-page: 961 ident: b32 article-title: A bi-population cooperative memetic algorithm for distributed hybrid flow-shop scheduling publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence – volume: 134 year: 2021 ident: b21 article-title: Reinforcement learning for combinatorial optimization: A survey publication-title: Computers & Operations Research – volume: 25 start-page: 881 year: 2014 end-page: 897 ident: b40 article-title: Hybrid sampling strategy-based multiobjective evolutionary algorithm for process planning and scheduling problem publication-title: Journal of Intelligent Manufacturing – volume: 145 year: 2020 ident: b47 article-title: Hybrid multiobjective evolutionary algorithm with fast sampling strategy-based global search and route sequence difference-based local search for VRPTW publication-title: Expert Systems with Applications – volume: 201 year: 2022 ident: b23 article-title: A collaborative iterative greedy algorithm for the scheduling of distributed heterogeneous hybrid flow shop with blocking constraints publication-title: Expert Systems with Applications – volume: 214 year: 2023 ident: b29 article-title: Modelling and optimization of distributed heterogeneous hybrid flow shop lot-streaming scheduling problem publication-title: Expert Systems with Applications – volume: 15 start-page: 591 year: 2011 end-page: 607 ident: b7 article-title: A multi-facet survey on memetic computation publication-title: IEEE Transactions on Evolutionary Computation – volume: 32 start-page: 121 year: 2017 end-page: 131 ident: b11 article-title: A competitive memetic algorithm for multi-objective distributed permutation flow shop scheduling problem publication-title: Swarm and Evolutionary Computation – start-page: 1 year: 2020 end-page: 19 ident: b37 article-title: The distributed assembly permutation flowshop scheduling problem with flexible assembly and batch delivery publication-title: International Journal of Production Research – volume: 12 start-page: 724 year: 2018 end-page: 737 ident: b1 article-title: Forecasting pan evaporation with an integrated artificial neural network quantum-behaved particle swarm optimization model: A case study in Talesh, Northern Iran publication-title: Engineering Applications of Computational Fluid Mechanics – volume: 59 start-page: 5404 year: 2021 end-page: 5421 ident: b4 article-title: A shuffled frog-leaping algorithm with memeplex quality for bi-objective distributed scheduling in hybrid flow shop publication-title: International Journal of Production Research – year: 2023 ident: 10.1016/j.eswa.2023.121570_b15 article-title: Toward automated algorithm configuration for distributed hybrid flow shop scheduling with multiprocessor tasks publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2023.110309 – volume: 201 year: 2022 ident: 10.1016/j.eswa.2023.121570_b23 article-title: A collaborative iterative greedy algorithm for the scheduling of distributed heterogeneous hybrid flow shop with blocking constraints publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.117256 – volume: 26 start-page: 1043 issue: 5 year: 2022 ident: 10.1016/j.eswa.2023.121570_b43 article-title: Distributed co-evolutionary memetic algorithm for distributed hybrid differentiation flowshop scheduling problem publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2022.3150771 – volume: 5 start-page: 947 issue: 6 year: 2020 ident: 10.1016/j.eswa.2023.121570_b32 article-title: A bi-population cooperative memetic algorithm for distributed hybrid flow-shop scheduling publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence doi: 10.1109/TETCI.2020.3022372 – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 10.1016/j.eswa.2023.121570_b12 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2011.02.002 – volume: 26 start-page: 646 issue: 5 year: 2021 ident: 10.1016/j.eswa.2023.121570_b18 article-title: Decomposition-based multi-objective optimization for energy-aware distributed hybrid flow shop scheduling with multiprocessor tasks publication-title: Tsinghua Science and Technology doi: 10.26599/TST.2021.9010007 – volume: 145 year: 2020 ident: 10.1016/j.eswa.2023.121570_b47 article-title: Hybrid multiobjective evolutionary algorithm with fast sampling strategy-based global search and route sequence difference-based local search for VRPTW publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.113151 – volume: 15 start-page: 591 issue: 5 year: 2011 ident: 10.1016/j.eswa.2023.121570_b7 article-title: A multi-facet survey on memetic computation publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2011.2132725 – volume: 149 year: 2020 ident: 10.1016/j.eswa.2023.121570_b8 article-title: A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2020.106778 – volume: 25 start-page: 881 issue: 5 year: 2014 ident: 10.1016/j.eswa.2023.121570_b40 article-title: Hybrid sampling strategy-based multiobjective evolutionary algorithm for process planning and scheduling problem publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-013-0814-2 – volume: 19 start-page: 8833 issue: 9 year: 2022 ident: 10.1016/j.eswa.2023.121570_b42 article-title: Multiobjective particle swarm optimization with direction search and differential evolution for distributed flow-shop scheduling problem publication-title: Mathematical Biosciences and Engineering doi: 10.3934/mbe.2022410 – volume: 32 start-page: 121 year: 2017 ident: 10.1016/j.eswa.2023.121570_b11 article-title: A competitive memetic algorithm for multi-objective distributed permutation flow shop scheduling problem publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2016.06.002 – volume: 150 year: 2020 ident: 10.1016/j.eswa.2023.121570_b34 article-title: Yin-yang firefly algorithm based on dimensionally Cauchy mutation publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113216 – volume: 59 start-page: 5404 issue: 18 year: 2021 ident: 10.1016/j.eswa.2023.121570_b4 article-title: A shuffled frog-leaping algorithm with memeplex quality for bi-objective distributed scheduling in hybrid flow shop publication-title: International Journal of Production Research doi: 10.1080/00207543.2020.1780333 – volume: 94 year: 2020 ident: 10.1016/j.eswa.2023.121570_b35 article-title: Energy-efficient no-wait permutation flow shop scheduling by adaptive multi-objective variable neighborhood search publication-title: Omega doi: 10.1016/j.omega.2019.102117 – volume: 109 start-page: 77 year: 2019 ident: 10.1016/j.eswa.2023.121570_b14 article-title: Efficiency of the solution representations for the hybrid flow shop scheduling problem with makespan objective publication-title: Computers & Operations Research doi: 10.1016/j.cor.2019.05.002 – volume: 19 start-page: 3379 issue: 4 year: 2021 ident: 10.1016/j.eswa.2023.121570_b26 article-title: An ant colony optimization behavior-based MOEA/D for distributed heterogeneous hybrid flow shop scheduling problem under nonidentical time-of-use electricity tariffs publication-title: IEEE Transactions on Automation Science and Engineering doi: 10.1109/TASE.2021.3119353 – year: 2023 ident: 10.1016/j.eswa.2023.121570_b9 article-title: An improved multi-population genetic algorithm with a greedy job insertion inter-factory neighborhood structure for distributed heterogeneous hybrid flow shop scheduling problem publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.119805 – volume: 183 year: 2021 ident: 10.1016/j.eswa.2023.121570_b27 article-title: Multi-objective evolutionary algorithm based on multiple neighborhoods local search for multi-objective distributed hybrid flow shop scheduling problem publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.115453 – volume: 125 start-page: 423 year: 2018 ident: 10.1016/j.eswa.2023.121570_b45 article-title: Memetic social spider optimization algorithm for scheduling two-stage assembly flowshop in a distributed environment publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2018.09.007 – volume: 184 year: 2019 ident: 10.1016/j.eswa.2023.121570_b22 article-title: A distributed permutation flowshop scheduling problem with the customer order constraint publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2019.104894 – volume: 46 start-page: 139 issue: 1 year: 2015 ident: 10.1016/j.eswa.2023.121570_b31 article-title: An estimation of distribution algorithm-based memetic algorithm for the distributed assembly permutation flow-shop scheduling problem publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems doi: 10.1109/TSMC.2015.2416127 – volume: 26 start-page: 461 issue: 3 year: 2021 ident: 10.1016/j.eswa.2023.121570_b33 article-title: A cooperative memetic algorithm with learning-based agent for energy-aware distributed hybrid flow-shop scheduling publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2021.3106168 – volume: 130 start-page: 661 year: 2019 ident: 10.1016/j.eswa.2023.121570_b44 article-title: Hybrid multiobjective evolutionary algorithm based on differential evolution for flow shop scheduling problems publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2019.03.019 – volume: 113 start-page: 113 issue: 1 year: 1999 ident: 10.1016/j.eswa.2023.121570_b3 article-title: Heuristics for scheduling in a flow shop with multiple processors publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(97)00423-2 – start-page: 1 year: 2020 ident: 10.1016/j.eswa.2023.121570_b37 article-title: The distributed assembly permutation flowshop scheduling problem with flexible assembly and batch delivery publication-title: International Journal of Production Research – volume: 169 start-page: 781 issue: 3 year: 2006 ident: 10.1016/j.eswa.2023.121570_b24 article-title: A genetic algorithm for hybrid flowshops with sequence dependent setup times and machine eligibility publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2004.06.038 – volume: 194 year: 2020 ident: 10.1016/j.eswa.2023.121570_b25 article-title: Modeling and multi-neighborhood iterated greedy algorithm for distributed hybrid flow shop scheduling problem publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2020.105527 – volume: 92 start-page: 132 year: 2018 ident: 10.1016/j.eswa.2023.121570_b38 article-title: Minimizing makespan for the distributed hybrid flowshop scheduling problem with multiprocessor tasks publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.09.032 – volume: 7 start-page: 66879 year: 2019 ident: 10.1016/j.eswa.2023.121570_b16 article-title: Solving distributed hybrid flowshop scheduling problems by a hybrid brain storm optimization algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2917273 – volume: 53 start-page: 140 year: 2016 ident: 10.1016/j.eswa.2023.121570_b17 article-title: Agent-based fuzzy constraint-directed negotiation mechanism for distributed job shop scheduling publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2016.04.005 – volume: 12 start-page: 724 issue: 1 year: 2018 ident: 10.1016/j.eswa.2023.121570_b1 article-title: Forecasting pan evaporation with an integrated artificial neural network quantum-behaved particle swarm optimization model: A case study in Talesh, Northern Iran publication-title: Engineering Applications of Computational Fluid Mechanics doi: 10.1080/19942060.2018.1517052 – volume: 1 start-page: 176 issue: 3 year: 2021 ident: 10.1016/j.eswa.2023.121570_b41 article-title: Multidirection update-based multiobjective particle swarm optimization for mixed no-idle flow-shop scheduling problem publication-title: Complex System Modeling and Simulation doi: 10.23919/CSMS.2021.0017 – year: 2010 ident: 10.1016/j.eswa.2023.121570_b39 – volume: 17 start-page: 229 issue: 2 year: 1999 ident: 10.1016/j.eswa.2023.121570_b30 article-title: Reinforcement learning: An introduction publication-title: Robotica – volume: 8 start-page: 96115 year: 2020 ident: 10.1016/j.eswa.2023.121570_b46 article-title: Memetic algorithm with meta-lamarckian learning and simplex search for distributed flexible assembly permutation flowshop scheduling problem publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2996305 – volume: 134 year: 2021 ident: 10.1016/j.eswa.2023.121570_b21 article-title: Reinforcement learning for combinatorial optimization: A survey publication-title: Computers & Operations Research doi: 10.1016/j.cor.2021.105400 – volume: 27 start-page: 231 issue: 1 year: 2016 ident: 10.1016/j.eswa.2023.121570_b2 article-title: A survey of multi-factory scheduling publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-014-0890-y – volume: 240 start-page: 338 issue: 2 year: 2015 ident: 10.1016/j.eswa.2023.121570_b36 article-title: Scheduling a hybrid assembly-differentiation flowshop to minimize total flow time publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2014.07.004 – volume: 90 year: 2020 ident: 10.1016/j.eswa.2023.121570_b5 article-title: Dynamic shuffled frog-leaping algorithm for distributed hybrid flow shop scheduling with multiprocessor tasks publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2020.103540 – volume: 194 year: 2020 ident: 10.1016/j.eswa.2023.121570_b48 article-title: A cooperative coevolution algorithm for multi-objective fuzzy distributed hybrid flow shop publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2020.105536 – volume: 38 start-page: 3189 issue: 3 year: 2020 ident: 10.1016/j.eswa.2023.121570_b6 article-title: Fuzzy distributed two-stage hybrid flow shop scheduling problem with setup time: Collaborative variable search publication-title: Journal of Intelligent & Fuzzy Systems – volume: 52 start-page: 1461 issue: 9 year: 2020 ident: 10.1016/j.eswa.2023.121570_b19 article-title: Solving distributed two-stage hybrid flowshop scheduling using a shuffled frog-leaping algorithm with memeplex grouping publication-title: Engineering Optimization doi: 10.1080/0305215X.2019.1674295 – volume: 289 start-page: 1209 issue: 3 year: 2021 ident: 10.1016/j.eswa.2023.121570_b13 article-title: Incorporating decision-maker’s preferences into the automatic configuration of bi-objective optimisation algorithms publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2020.07.059 – volume: 200 start-page: 395 issue: 2 year: 2010 ident: 10.1016/j.eswa.2023.121570_b10 article-title: An improved genetic algorithm for the distributed and flexible job-shop scheduling problem publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2009.01.008 – volume: 14 start-page: 193 issue: 2 year: 2022 ident: 10.1016/j.eswa.2023.121570_b20 article-title: A multiobjective memetic algorithm for integrated process planning and scheduling problem in distributed heterogeneous manufacturing systems publication-title: Memetic Computing doi: 10.1007/s12293-022-00364-x – volume: 75 year: 2022 ident: 10.1016/j.eswa.2023.121570_b28 article-title: A network memetic algorithm for energy and labor-aware distributed heterogeneous hybrid flow shop scheduling problem publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2022.101190 – volume: 214 year: 2023 ident: 10.1016/j.eswa.2023.121570_b29 article-title: Modelling and optimization of distributed heterogeneous hybrid flow shop lot-streaming scheduling problem publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.119151 |
| SSID | ssj0017007 |
| Score | 2.6210976 |
| Snippet | Most existing distributed hybrid flow-shop scheduling problems (DHFSPs) assume identical shops and lack consideration of heterogeneous shops. This study... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 121570 |
| SubjectTerms | Energy-efficient Heterogeneous distributed scheduling Hybrid flow-shop scheduling Memetic algorithm Particle swarm optimization Q-learning |
| Title | A multiobjective memetic algorithm with particle swarm optimization and Q-learning-based local search for energy-efficient distributed heterogeneous hybrid flow-shop scheduling problem |
| URI | https://dx.doi.org/10.1016/j.eswa.2023.121570 |
| Volume | 237 |
| WOSCitedRecordID | wos001084350400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zj9MwELZKlwdeuNEul-aBt8hVDoc4jxVaLqEViEX0LYpju4fapLTZg3_Gv-AvMY6d9Fi0AiReoirN1JG-r_Z4PPMNIS8KP09iGTOc_ZQ0otqaphHjFKkg0iDPhbaFwh-SkxM-GqUfe72fbS3M-TwpS355mS7_K9R4D8E2pbN_AXf3o3gDPyPoeEXY8fpHwA9tkmAlZnYu8xZqoRpZ1vm4Wk3rycIGX5fO1ltf5KuFV-HcsXBFmc2JwifqOkqMqVnqpNcse54LkzRK4U3dIFWNCoXJKZBGhdc00MKnJybPpsK3VCbJdvLdVIZ5el5d0PWkWnq4qcZFztXCNz1tds4IjABz7WSm2wK8raP2K-Hur6r8hkQfd_lFU5tLsCl0e6NcmUC9Pqu6ua4zn8rKWbsQSMg2OWA2LtfW5mwSoWyAM6EssD2ABspO7zyJ6MvE9mRs5__Qqs5cWUtsWGM2UAjDwHSZb5Q4bJuTPY3uz2YwMxZu6EKjxX6DHIRJnPI-ORi-Ox697w62Et9W8Lcv5-q4bMrh_ki_95W2_J_Tu-S227jA0JLmHump8j650zYFAbdGPCA_hrDLP3D8g45_YPCEln_Q8A-2-QfIP9jnHzT8A8s_QP7BPv9gi3-wwz-w_IOOf7DhHzj-PSRfXh-fvnpLXXsQWkS-X1MdhsoXhVZc-LngLMatcyBwuU4CEfICv5XoTmsmZRiIIigkVzwXMtEp-q2FzqNHpF9WpTokIONIRELrUIicBZIJluc5Z4qhg6uVjo5I0AKRFU4737RwmWdtkuQsM-BlBrzMgndEvM5maZVjrn06bvHNnO9rfdoM6XiN3eN_tHtCbm3-SU9Jv16dqWfkZnFeT9er5461vwDuquM1 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multiobjective+memetic+algorithm+with+particle+swarm+optimization+and+Q-learning-based+local+search+for+energy-efficient+distributed+heterogeneous+hybrid+flow-shop+scheduling+problem&rft.jtitle=Expert+systems+with+applications&rft.au=Zhang%2C+Wenqiang&rft.au=Li%2C+Chen&rft.au=Gen%2C+Mitsuo&rft.au=Yang%2C+Weidong&rft.date=2024-03-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=237&rft_id=info:doi/10.1016%2Fj.eswa.2023.121570&rft.externalDocID=S0957417423020729 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |