Bilinear isometries on spaces of vector-valued continuous functions

Let X, Y, Z be compact Hausdorff spaces and let E 1 , E 2 , E 3 be Banach spaces. If T : C ( X , E 1 ) × C ( Y , E 2 ) → C ( Z , E 3 ) is a bilinear isometry which is stable on constants and E 3 is strictly convex, then there exist a nonempty subset Z 0 of Z, a surjective continuous mapping h : Z 0...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical analysis and applications Vol. 385; no. 1; pp. 340 - 344
Main Authors: Font, Juan J., Sanchis, Manuel
Format: Journal Article
Language:English
Published: Elsevier Inc 2012
Subjects:
ISSN:0022-247X, 1096-0813
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let X, Y, Z be compact Hausdorff spaces and let E 1 , E 2 , E 3 be Banach spaces. If T : C ( X , E 1 ) × C ( Y , E 2 ) → C ( Z , E 3 ) is a bilinear isometry which is stable on constants and E 3 is strictly convex, then there exist a nonempty subset Z 0 of Z, a surjective continuous mapping h : Z 0 → X × Y and a continuous function ω : Z 0 → B i l ( E 1 × E 2 , E 3 ) such that T ( f , g ) ( z ) = ω ( z ) ( f ( π X ( h ( z ) ) ) , g ( π Y ( h ( z ) ) ) ) for all z ∈ Z 0 and every pair ( f , g ) ∈ C ( X , E 1 ) × C ( Y , E 2 ) . This result generalizes the main theorems in Cambern (1978) [2] and Moreno and Rodríguez (2005) [7].
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2011.06.054