Kernels in planar digraphs
A set S of vertices in a digraph D = ( V , A ) is a kernel if S is independent and every vertex in V - S has an out-neighbor in S. We show that there exist O ( n 2 19.1 k + n 4 ) -time and O ( k 36 + 2 19.1 k k 9 + n 2 ) -time algorithms for checking whether a planar digraph D of order n has a kerne...
Uloženo v:
| Vydáno v: | Journal of computer and system sciences Ročník 71; číslo 2; s. 174 - 184 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.08.2005
|
| Témata: | |
| ISSN: | 0022-0000, 1090-2724 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A set
S of vertices in a digraph
D
=
(
V
,
A
)
is a kernel if
S is independent and every vertex in
V
-
S
has an out-neighbor in
S. We show that there exist
O
(
n
2
19.1
k
+
n
4
)
-time and
O
(
k
36
+
2
19.1
k
k
9
+
n
2
)
-time algorithms for checking whether a planar digraph
D of order
n has a kernel with at most
k vertices. Moreover, if
D has a kernel of size at most
k, the algorithms find such a kernel of minimal size. |
|---|---|
| ISSN: | 0022-0000 1090-2724 |
| DOI: | 10.1016/j.jcss.2005.02.003 |