Euclidean algorithm for a class of linear orders

Borrowing inspiration from Marcone and Montálban's one-one correspondence between the class of signed trees and the equimorphism classes of indecomposable scattered linear orders, we find a subclass of signed trees which has an analogous correspondence with equimorphism classes of indecomposabl...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete mathematics Ročník 346; číslo 12; s. 113639
Hlavní autoři: Agrawal, Shashwat, Kuber, Amit, Gupta, Esha
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.12.2023
Témata:
ISSN:0012-365X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Borrowing inspiration from Marcone and Montálban's one-one correspondence between the class of signed trees and the equimorphism classes of indecomposable scattered linear orders, we find a subclass of signed trees which has an analogous correspondence with equimorphism classes of indecomposable finite rank discrete linear orders. We also introduce the class of finitely presented linear orders–the smallest subclass of finite rank linear orders containing 1, ω and ω⁎ and closed under finite sums and lexicographic products. For this class we develop a generalization of the Euclidean algorithm where the width of a linear order plays the role of the Euclidean norm. Using this as a tool we classify the isomorphism classes of finitely presented linear orders in terms of an equivalence relation on their presentations using 3-signed trees.
ISSN:0012-365X
DOI:10.1016/j.disc.2023.113639