On the q-Bernstein polynomials of rational functions with real poles
The paper aims to investigate the convergence of the q-Bernstein polynomials Bn,q(f;x) attached to rational functions in the case q>1. The problem reduces to that for the partial fractions (x−α)−j, j∈N. The already available results deal with cases, where either the pole α is simple or α≠q−m, m∈N...
Uložené v:
| Vydané v: | Journal of mathematical analysis and applications Ročník 413; číslo 2; s. 547 - 556 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
15.05.2014
|
| Predmet: | |
| ISSN: | 0022-247X, 1096-0813 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The paper aims to investigate the convergence of the q-Bernstein polynomials Bn,q(f;x) attached to rational functions in the case q>1. The problem reduces to that for the partial fractions (x−α)−j, j∈N. The already available results deal with cases, where either the pole α is simple or α≠q−m, m∈N0. Consequently, the present work is focused on the polynomials Bn,q(f;x) for the functions of the form f(x)=(x−q−m)−j with j⩾2. For such functions, it is proved that the interval of convergence of {Bn,q(f;x)} depends not only on the location, but also on the multiplicity of the pole – a phenomenon which has not been considered previously. |
|---|---|
| ISSN: | 0022-247X 1096-0813 |
| DOI: | 10.1016/j.jmaa.2013.12.009 |