A Novel Evolutionary Kernel Intuitionistic Fuzzy C -means Clustering Algorithm

This study proposes a novel evolutionary kernel intuitionistic fuzzy c-means clustering algorithm (EKIFCM) that combines Atanassov's intuitionistic fuzzy sets (IFSs) with kernel-based fuzzy c-means (KFCM), and genetic algorithms (GA) are optimally used simultaneously to select the parameters of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on fuzzy systems Ročník 22; číslo 5; s. 1074 - 1087
Hlavní autor: Lin, Kuo-Ping
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.10.2014
Témata:
ISSN:1063-6706, 1941-0034
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This study proposes a novel evolutionary kernel intuitionistic fuzzy c-means clustering algorithm (EKIFCM) that combines Atanassov's intuitionistic fuzzy sets (IFSs) with kernel-based fuzzy c-means (KFCM), and genetic algorithms (GA) are optimally used simultaneously to select the parameters of the EKIFCM. The EKIFCM can obtain the advantages of intuitionistic fuzzy sets, kernel functions, and GA in actual clustering problems. Experiments on 2-D synthetic datasets and machine learning repository (http://archive.ics.uci.edu/beta/) datasets show that the proposed EKIFCM is more efficient than conventional algorithms such as the k-means (KM), FCM, Gustafson-Kessel (GK) clustering algorithm, Gath-Geva (GG) clustering algorithm, Chaira's intuitionistic fuzzy c-means (IFCM), and kernel-based fuzzy c-means with Gaussian kernel functions [KFCM(G)] in standard measurement indexes.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1063-6706
1941-0034
DOI:10.1109/TFUZZ.2013.2280141