Differgram: A convex optimization-based method for extracting optimal frequency band for fault diagnosis of rotating machinery

The extraction of fault resonance bands from a full frequency band has always stood as a classical and effective strategy for fault diagnosis in rotating machinery. Among the existing techniques for capturing fault frequency bands, methods such as fast kurtogram and its variants have been prevalent....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications Jg. 245; S. 123051
Hauptverfasser: Guo, Jianchun, Liu, Yi, Yang, Ronggang, Sun, Weifang, Xiang, Jiawei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.07.2024
Schlagworte:
ISSN:0957-4174, 1873-6793
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The extraction of fault resonance bands from a full frequency band has always stood as a classical and effective strategy for fault diagnosis in rotating machinery. Among the existing techniques for capturing fault frequency bands, methods such as fast kurtogram and its variants have been prevalent. However, these methods encounter two main limitations. Firstly, they are subject to the constraints of index performance, potentially leading to the identification of incorrect frequency bands. Secondly, they do not fully harness the potential of healthy signals, thus hindering accurate fault frequency band localization. While approaches like SKRgram and accugram endeavor to leverage healthy signals to highlight differences between healthy and faulty signals, SKRgram falls short in thoroughly exploring the significance of healthy signals. Accugram relies on classifier accuracy to pinpoint fault frequency bands, rendering it less robust and less interpretable. To capitalize more effectively on healthy signals' potential, this study proposed a novel approach called differgram based on the convex optimization model. By inputting both healthy and faulty signals into the differgram, optimal fault frequency bands can be extracted. By solving the constructed convex optimization model, the optimal difference frequency bands between healthy and faulty signals are automatically identified. The method is substantiated through mathematical proofs and physical explanations, enhancing its interpretability. Through simulations and experimental validation, the proposed diffetergram demonstrates its efficiency in the extraction of fault frequency bands. In comparison to fast kurtogram, SKRgram, and accugram, the differgram showcases heightened robustness and noise immunity.
AbstractList The extraction of fault resonance bands from a full frequency band has always stood as a classical and effective strategy for fault diagnosis in rotating machinery. Among the existing techniques for capturing fault frequency bands, methods such as fast kurtogram and its variants have been prevalent. However, these methods encounter two main limitations. Firstly, they are subject to the constraints of index performance, potentially leading to the identification of incorrect frequency bands. Secondly, they do not fully harness the potential of healthy signals, thus hindering accurate fault frequency band localization. While approaches like SKRgram and accugram endeavor to leverage healthy signals to highlight differences between healthy and faulty signals, SKRgram falls short in thoroughly exploring the significance of healthy signals. Accugram relies on classifier accuracy to pinpoint fault frequency bands, rendering it less robust and less interpretable. To capitalize more effectively on healthy signals' potential, this study proposed a novel approach called differgram based on the convex optimization model. By inputting both healthy and faulty signals into the differgram, optimal fault frequency bands can be extracted. By solving the constructed convex optimization model, the optimal difference frequency bands between healthy and faulty signals are automatically identified. The method is substantiated through mathematical proofs and physical explanations, enhancing its interpretability. Through simulations and experimental validation, the proposed diffetergram demonstrates its efficiency in the extraction of fault frequency bands. In comparison to fast kurtogram, SKRgram, and accugram, the differgram showcases heightened robustness and noise immunity.
ArticleNumber 123051
Author Guo, Jianchun
Sun, Weifang
Xiang, Jiawei
Yang, Ronggang
Liu, Yi
Author_xml – sequence: 1
  givenname: Jianchun
  surname: Guo
  fullname: Guo, Jianchun
  email: 15167735885@163.com
  organization: School of Mechanical Engineering, Guangxi University, Nanning 530004, PR China
– sequence: 2
  givenname: Yi
  surname: Liu
  fullname: Liu, Yi
  email: liuyi_aa1@163.com
  organization: College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035 PR China
– sequence: 3
  givenname: Ronggang
  orcidid: 0009-0004-0682-4526
  surname: Yang
  fullname: Yang, Ronggang
  email: 20210057@wzu.edu.cn
  organization: College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035 PR China
– sequence: 4
  givenname: Weifang
  surname: Sun
  fullname: Sun, Weifang
  email: vincent_suen@126.com
  organization: College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035 PR China
– sequence: 5
  givenname: Jiawei
  orcidid: 0000-0003-4028-985X
  surname: Xiang
  fullname: Xiang, Jiawei
  email: jwxiang@wzu.edu.cn
  organization: College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035 PR China
BookMark eNp9kL1OwzAURi1UJMrPCzD5BVKu46SOEUvFv4TEArPlONfFVWsX20DLwLOTEiYGprt850rnHJKRDx4JOWUwYcCmZ4sJpg89KaHkE1ZyqNkeGbNG8GIqJB-RMchaFBUT1QE5TGkBwASAGJOvK2ctxnnUq3M6oyb4d9zQsM5u5T51dsEXrU7Y0RXml9BRGyLFTY7aZOfnw1AvqY34-obebGmr_bCy-m2Zaef03IfkEg2WxpD1D7bS5sV5jNtjsm_1MuHJ7z0izzfXT5d3xcPj7f3l7KEwHCAXbTOVbSUryYStW2MEcsNR2hJkwzuoW0QuNDDgtmxsa1oJrOaV4VMLklvJj0gz_DUxpBTRKuPyj16v4paKgdp1VAu166h2HdXQsUfLP-g69s5x-z90MUDYS707jCoZ1_fBzkU0WXXB_Yd_A1eIkWc
CitedBy_id crossref_primary_10_1016_j_eswa_2025_126947
crossref_primary_10_1088_1402_4896_ad5f64
crossref_primary_10_1109_JSEN_2024_3468335
crossref_primary_10_1007_s00170_024_14626_0
crossref_primary_10_3390_machines13080722
crossref_primary_10_1016_j_eswa_2025_126409
crossref_primary_10_1016_j_measurement_2024_115737
crossref_primary_10_1016_j_measurement_2025_118035
crossref_primary_10_1016_j_ymssp_2024_111611
crossref_primary_10_1088_1361_6501_ad894e
crossref_primary_10_1109_JSEN_2024_3382809
crossref_primary_10_1016_j_apacoust_2024_109962
crossref_primary_10_1016_j_ymssp_2024_112033
Cites_doi 10.1016/j.ymssp.2005.12.002
10.1016/j.ymssp.2021.108366
10.1016/j.jsv.2016.08.026
10.1016/j.eswa.2023.120858
10.1016/j.measurement.2015.07.045
10.1016/j.knosys.2023.110984
10.1016/j.eswa.2023.119738
10.1016/j.ymssp.2009.11.011
10.1016/j.ymssp.2020.107130
10.1109/TR.2018.2882682
10.1088/0957-0233/27/12/125019
10.1016/j.eswa.2021.116290
10.1016/j.ymssp.2010.12.011
10.1016/j.jmsy.2023.07.012
10.1016/j.isatra.2023.03.026
10.1088/1361-6501/ac7bd5
10.1016/j.measurement.2020.107735
10.1016/j.ress.2023.109768
10.1016/j.ymssp.2015.04.034
10.1016/j.eswa.2023.121216
10.1016/j.triboint.2015.12.037
10.1109/TSP.2013.2265222
10.1016/j.ymssp.2010.05.018
10.1016/j.eswa.2020.114094
10.1016/j.ymssp.2021.108333
10.1016/j.aei.2023.101883
10.1109/TII.2020.2968370
10.1016/j.isatra.2019.05.007
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2023.123051
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2023_123051
S0957417423035534
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY1
LY7
M41
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c300t-b869b494917f5bcc7e3c3e9f20983d05bee37a0103f28fbcb901534c36f093f93
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001155989000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sat Nov 29 07:09:12 EST 2025
Tue Nov 18 22:43:31 EST 2025
Sat Apr 13 16:35:12 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Fault diagnosis
Fault frequency band extraction
The importance of health signals
Differgram
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-b869b494917f5bcc7e3c3e9f20983d05bee37a0103f28fbcb901534c36f093f93
ORCID 0000-0003-4028-985X
0009-0004-0682-4526
ParticipantIDs crossref_citationtrail_10_1016_j_eswa_2023_123051
crossref_primary_10_1016_j_eswa_2023_123051
elsevier_sciencedirect_doi_10_1016_j_eswa_2023_123051
PublicationCentury 2000
PublicationDate 2024-07-01
2024-07-00
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Guo, Si, Liu, Li, Li, Xiang (b0175) 2022; 33
Hou, Wang, Xia, Peng, Tsui (b0155) 2023; 191
Xiang, Zhong, Gao (b0170) 2015; 75
Antoni (b0035) 2007; 21
Cui, Tian, Wei, Liu (b0075) 2024; 238
Chen, Shao, Xiao, Yan, Cai, Liu (b0125) 2023; 198
Gu, Yang, Liu, Hao (b0055) 2016; 27
Hou, Wang, Kong, Liu, Peng, Tsui (b0160) 2022; 174
Kumar, Gandhi, Zhou, Kumar, Xiang (b0030) 2020; 158
55(August 2022), 101883. https://doi.org/10.1016/j.aei.2023.101883.
Guo, Si, Xiang (b0165) 2022; 196
Li, J., Huang, R., Chen, Z., He, G., Gryllias, K. C., & Li, W. (2023). Deep continual transfer learning with dynamic weight aggregation for fault diagnosis of industrial streaming data under varying working conditions.
Barszcz, Jabłoński (b0040) 2011; 25
Lin, Shao, Zhou, Cai, Liu (b0130) 2023; 230
(April 2021), 108333. https://doi.org/10.1016/j.ymssp.2021.108333.
Ma, S., Han, Q., & Chu, F. (2023). Sparse representation learning for fault feature extraction and diagnosis of rotating machinery.
Rai, Upadhyay (b0025) 2016; 96
,
Shao, X., & Kim, C. (2024). Adaptive multi-scale attention convolution neural network for cross-domain fault diagnosis.
Gilles (b0060) 2013; 61
Kumar, A., Tang, H., Vashishtha, G., & Xiang, J. (2022). Noise subtraction and marginal enhanced square envelope spectrum (MESES) for the identification of bearing defects in centrifugal and axial pump.
Gao, Xiang, Hou, Tang, Zhong, Ye (b0185) 2021; 147
Su, Wang, Zhu, Zhang, Guo (b0045) 2010; 24
Antoni (b0050) 2016; 74
Miao, Y., Wang, J., Zhang, B., & Li, H. (2022). Practical framework of Gini index in the application of machinery fault feature extraction.
Wang, Han, Chu, Feng (b0145) 2016; 385
(May 2021), 108366. https://doi.org/10.1016/j.ymssp.2021.108366.
221(October 2021), 119738. https://doi.org/10.1016/j.eswa.2023.119738.
Gao, Liu, Xiang (b0110) 2020; 16
Kumar, P., & Hati, A. S. (2022). Dilated convolutional neural network based model for bearing faults and broken rotor bar detection in squirrel cage induction motors.
Vashishtha, Chauhan, Kumar, Kumar, Zimroz, Kumar (b0095) 2023; 280
(October 2021), 120858. https://doi.org/10.1016/j.eswa.2023.120858.
191(October 2021), 116290. https://doi.org/10.1016/j.eswa.2021.116290.
Yan, Shao, Min, Peng, Cai, Liu (b0085) 2023; 236
Xia, Shao, Williams, Lu, Shu, de Silva (b0115) 2021; 215
Kumar, A., Kumar, R., Tang, H., & Xiang, J. (2024). A comprehensive study on developing an intelligent framework for identification and quantitative evaluation of the bearing defect size.
242(October 2023), 109768. https://doi.org/10.1016/j.ress.2023.109768.
Kumar, Vashishtha, Gandhi, Tang, Xiang (b0090) 2021; 104
Matania, Bachar, Khemani, Das, Azarian, Bortman (b0120) 2023; 56
Guo, Si, Xiang (b0015) 2023; 138
(October 2021), 119738. https://doi.org/10.1016/j.eswa.2023.119738.
Lei, Lin, He, Zi (b0065) 2011; 25
Surucu, O., Gadsden, S. A., & Yawney, J. (2023). Condition Monitoring using Machine Learning: A Review of Theory, Applications, and Recent Advances.
236(April 2023), 121216. https://doi.org/10.1016/j.eswa.2023.121216.
Xiao, Shao, Feng, Han, Wan, Liu (b0140) 2023; 70
(April 2020), 114094. https://doi.org/10.1016/j.eswa.2020.114094.
Wang, Lei, Li, Li (b0190) 2020; 69
Dibaj, A., Ettefagh, M. M., Hassannejad, R., & Ehghaghi, M. B. (2021). A hybrid fine-tuned VMD and CNN scheme for untrained compound fault diagnosis of rotating machinery with unequal-severity faults.
Liu, Jin, Zuo, Peng (b0150) 2019; 95
Xiao (10.1016/j.eswa.2023.123051_b0140) 2023; 70
Su (10.1016/j.eswa.2023.123051_b0045) 2010; 24
10.1016/j.eswa.2023.123051_b0080
10.1016/j.eswa.2023.123051_b0180
Antoni (10.1016/j.eswa.2023.123051_b0035) 2007; 21
Matania (10.1016/j.eswa.2023.123051_b0120) 2023; 56
10.1016/j.eswa.2023.123051_b0105
Chen (10.1016/j.eswa.2023.123051_b0125) 2023; 198
Hou (10.1016/j.eswa.2023.123051_b0155) 2023; 191
Barszcz (10.1016/j.eswa.2023.123051_b0040) 2011; 25
10.1016/j.eswa.2023.123051_b0005
10.1016/j.eswa.2023.123051_b0020
Rai (10.1016/j.eswa.2023.123051_b0025) 2016; 96
Gu (10.1016/j.eswa.2023.123051_b0055) 2016; 27
10.1016/j.eswa.2023.123051_b0100
Xia (10.1016/j.eswa.2023.123051_b0115) 2021; 215
Lin (10.1016/j.eswa.2023.123051_b0130) 2023; 230
Guo (10.1016/j.eswa.2023.123051_b0175) 2022; 33
Gao (10.1016/j.eswa.2023.123051_b0110) 2020; 16
Gao (10.1016/j.eswa.2023.123051_b0185) 2021; 147
Antoni (10.1016/j.eswa.2023.123051_b0050) 2016; 74
10.1016/j.eswa.2023.123051_b0070
Gilles (10.1016/j.eswa.2023.123051_b0060) 2013; 61
Yan (10.1016/j.eswa.2023.123051_b0085) 2023; 236
Hou (10.1016/j.eswa.2023.123051_b0160) 2022; 174
Vashishtha (10.1016/j.eswa.2023.123051_b0095) 2023; 280
Kumar (10.1016/j.eswa.2023.123051_b0030) 2020; 158
Guo (10.1016/j.eswa.2023.123051_b0165) 2022; 196
Cui (10.1016/j.eswa.2023.123051_b0075) 2024; 238
Liu (10.1016/j.eswa.2023.123051_b0150) 2019; 95
Guo (10.1016/j.eswa.2023.123051_b0015) 2023; 138
10.1016/j.eswa.2023.123051_b0135
Wang (10.1016/j.eswa.2023.123051_b0190) 2020; 69
10.1016/j.eswa.2023.123051_b0010
Kumar (10.1016/j.eswa.2023.123051_b0090) 2021; 104
Xiang (10.1016/j.eswa.2023.123051_b0170) 2015; 75
Lei (10.1016/j.eswa.2023.123051_b0065) 2011; 25
Wang (10.1016/j.eswa.2023.123051_b0145) 2016; 385
10.1016/j.eswa.2023.123051_b0195
References_xml – reference: Shao, X., & Kim, C. (2024). Adaptive multi-scale attention convolution neural network for cross-domain fault diagnosis.
– volume: 75
  start-page: 180
  year: 2015
  end-page: 191
  ident: b0170
  article-title: Rolling element bearing fault detection using PPCA and spectral kurtosis
  publication-title: Measurement
– reference: Miao, Y., Wang, J., Zhang, B., & Li, H. (2022). Practical framework of Gini index in the application of machinery fault feature extraction.
– reference: Li, J., Huang, R., Chen, Z., He, G., Gryllias, K. C., & Li, W. (2023). Deep continual transfer learning with dynamic weight aggregation for fault diagnosis of industrial streaming data under varying working conditions.
– volume: 385
  start-page: 330
  year: 2016
  end-page: 349
  ident: b0145
  article-title: A new SKRgram based demodulation technique for planet bearing fault detection
  publication-title: Journal of Sound and Vibration
– volume: 21
  start-page: 108
  year: 2007
  end-page: 124
  ident: b0035
  article-title: Fast computation of the kurtogram for the detection of transient faults
  publication-title: Mechanical Systems and Signal Processing
– volume: 138
  start-page: 546
  year: 2023
  end-page: 561
  ident: b0015
  article-title: Cycle kurtosis entropy guided symplectic geometry mode decomposition for detecting faults in rotating machinery
  publication-title: ISA Transactions
– volume: 56
  year: 2023
  ident: b0120
  article-title: One-fault-shot learning for fault severity estimation of gears that addresses differences between simulation and experimental signals and transfer function effects
  publication-title: Advanced Engineering Informatics
– reference: (October 2021), 120858. https://doi.org/10.1016/j.eswa.2023.120858.
– reference: (October 2021), 119738. https://doi.org/10.1016/j.eswa.2023.119738.
– reference: , 191(October 2021), 116290. https://doi.org/10.1016/j.eswa.2021.116290.
– reference: Dibaj, A., Ettefagh, M. M., Hassannejad, R., & Ehghaghi, M. B. (2021). A hybrid fine-tuned VMD and CNN scheme for untrained compound fault diagnosis of rotating machinery with unequal-severity faults.
– reference: Surucu, O., Gadsden, S. A., & Yawney, J. (2023). Condition Monitoring using Machine Learning: A Review of Theory, Applications, and Recent Advances.
– volume: 215
  year: 2021
  ident: b0115
  article-title: Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning
  publication-title: Reliability Engineering and System Safety
– volume: 25
  start-page: 431
  year: 2011
  end-page: 451
  ident: b0040
  article-title: A novel method for the optimal band selection for vibration signal demodulation and comparison with the Kurtogram
  publication-title: Mechanical Systems and Signal Processing
– volume: 27
  year: 2016
  ident: b0055
  article-title: Rolling element bearing faults diagnosis based on kurtogram and frequency domain correlated kurtosis
  publication-title: Measurement Science and Technology
– volume: 95
  start-page: 346
  year: 2019
  end-page: 357
  ident: b0150
  article-title: ACCUGRAM: A novel approach based on classification to frequency band selection for rotating machinery fault diagnosis
  publication-title: ISA Transactions
– volume: 238
  year: 2024
  ident: b0075
  article-title: A self-attention based contrastive learning method for bearing fault diagnosis
  publication-title: Expert Systems with Applications
– volume: 33
  year: 2022
  ident: b0175
  article-title: FEM simulation-determined band pass filter method with continuously changed bandwidth for fault detection in axial
  publication-title: Measurement Science and Technology
– reference: (April 2020), 114094. https://doi.org/10.1016/j.eswa.2020.114094.
– volume: 158
  year: 2020
  ident: b0030
  article-title: Latest developments in gear defect diagnosis and prognosis: A review
  publication-title: Measurement
– reference: ,
– reference: (May 2021), 108366. https://doi.org/10.1016/j.ymssp.2021.108366.
– reference: Kumar, A., Kumar, R., Tang, H., & Xiang, J. (2024). A comprehensive study on developing an intelligent framework for identification and quantitative evaluation of the bearing defect size.
– reference: (April 2021), 108333. https://doi.org/10.1016/j.ymssp.2021.108333.
– reference: Kumar, P., & Hati, A. S. (2022). Dilated convolutional neural network based model for bearing faults and broken rotor bar detection in squirrel cage induction motors.
– volume: 236
  year: 2023
  ident: b0085
  article-title: FGDAE: A new machinery anomaly detection method towards complex operating conditions
  publication-title: Reliability Engineering and System Safety
– volume: 74
  start-page: 73
  year: 2016
  end-page: 94
  ident: b0050
  article-title: The infogram: Entropic evidence of the signature of repetitive transients
  publication-title: Mechanical Systems and Signal Processing
– volume: 174
  year: 2022
  ident: b0160
  article-title: Understanding importance of positive and negative signs of optimized weights used in the sum of weighted normalized Fourier spectrum/envelope spectrum for machine condition monitoring
  publication-title: Mechanical Systems and Signal Processing
– volume: 16
  start-page: 4961
  year: 2020
  end-page: 4971
  ident: b0110
  article-title: FEM Simulation-Based Generative Adversarial Networks to Detect Bearing Faults
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 69
  start-page: 401
  year: 2020
  end-page: 412
  ident: b0190
  article-title: A Hybrid Prognostics Approach for Estimating Remaining Useful Life of Rolling Element Bearings
  publication-title: IEEE Transactions on Reliability
– reference: , 242(October 2023), 109768. https://doi.org/10.1016/j.ress.2023.109768.
– reference: Kumar, A., Tang, H., Vashishtha, G., & Xiang, J. (2022). Noise subtraction and marginal enhanced square envelope spectrum (MESES) for the identification of bearing defects in centrifugal and axial pump.
– volume: 196
  year: 2022
  ident: b0165
  article-title: A compound fault diagnosis method of rolling bearing based on wavelet scattering transform and improved soft threshold denoising algorithm
  publication-title: Measurement
– reference: , 221(October 2021), 119738. https://doi.org/10.1016/j.eswa.2023.119738.
– volume: 191
  year: 2023
  ident: b0155
  article-title: Difference mode decomposition for adaptive signal decomposition
  publication-title: Mechanical Systems and Signal Processing
– volume: 104
  year: 2021
  ident: b0090
  article-title: Tacho-less sparse CNN to detect defects in rotor-bearing systems at varying speed
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 147
  year: 2021
  ident: b0185
  article-title: Method using L-kurtosis and enhanced clustering-based segmentation to detect faults in axial piston pumps
  publication-title: Mechanical Systems and Signal Processing
– volume: 70
  start-page: 186
  year: 2023
  end-page: 201
  ident: b0140
  article-title: Towards trustworthy rotating machinery fault diagnosis via attention uncertainty in transformer
  publication-title: Journal of Manufacturing Systems
– volume: 25
  start-page: 1738
  year: 2011
  end-page: 1749
  ident: b0065
  article-title: Application of an improved kurtogram method for fault diagnosis of rolling element bearings
  publication-title: Mechanical Systems and Signal Processing
– reference: , 236(April 2023), 121216. https://doi.org/10.1016/j.eswa.2023.121216.
– volume: 230
  year: 2023
  ident: b0130
  article-title: Generalized MAML for few-shot cross-domain fault diagnosis of bearing driven by heterogeneous signals
  publication-title: Expert Systems with Applications
– volume: 24
  start-page: 1458
  year: 2010
  end-page: 1472
  ident: b0045
  article-title: Rolling element bearing faults diagnosis based on optimal Morlet wavelet filter and autocorrelation enhancement
  publication-title: Mechanical Systems and Signal Processing
– reference: Ma, S., Han, Q., & Chu, F. (2023). Sparse representation learning for fault feature extraction and diagnosis of rotating machinery.
– volume: 61
  start-page: 3999
  year: 2013
  end-page: 4010
  ident: b0060
  article-title: Empirical wavelet transform
  publication-title: IEEE Transactions on Signal Processing
– volume: 198
  year: 2023
  ident: b0125
  article-title: Collaborative fault diagnosis of rotating machinery via dual adversarial guided unsupervised multi-domain adaptation network
  publication-title: Mechanical Systems and Signal Processing
– volume: 96
  start-page: 289
  year: 2016
  end-page: 306
  ident: b0025
  article-title: A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings
  publication-title: Tribology International
– reference: , 55(August 2022), 101883. https://doi.org/10.1016/j.aei.2023.101883.
– volume: 280
  year: 2023
  ident: b0095
  article-title: Intelligent fault diagnosis of worm gearbox based on adaptive CNN using amended gorilla troop optimization with quantum gate mutation strategy
  publication-title: Knowledge-Based Systems
– volume: 21
  start-page: 108
  issue: 1
  year: 2007
  ident: 10.1016/j.eswa.2023.123051_b0035
  article-title: Fast computation of the kurtogram for the detection of transient faults
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2005.12.002
– volume: 236
  issue: April
  year: 2023
  ident: 10.1016/j.eswa.2023.123051_b0085
  article-title: FGDAE: A new machinery anomaly detection method towards complex operating conditions
  publication-title: Reliability Engineering and System Safety
– ident: 10.1016/j.eswa.2023.123051_b0180
  doi: 10.1016/j.ymssp.2021.108366
– volume: 56
  issue: March
  year: 2023
  ident: 10.1016/j.eswa.2023.123051_b0120
  article-title: One-fault-shot learning for fault severity estimation of gears that addresses differences between simulation and experimental signals and transfer function effects
  publication-title: Advanced Engineering Informatics
– volume: 385
  start-page: 330
  year: 2016
  ident: 10.1016/j.eswa.2023.123051_b0145
  article-title: A new SKRgram based demodulation technique for planet bearing fault detection
  publication-title: Journal of Sound and Vibration
  doi: 10.1016/j.jsv.2016.08.026
– ident: 10.1016/j.eswa.2023.123051_b0005
  doi: 10.1016/j.eswa.2023.120858
– volume: 75
  start-page: 180
  year: 2015
  ident: 10.1016/j.eswa.2023.123051_b0170
  article-title: Rolling element bearing fault detection using PPCA and spectral kurtosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.07.045
– volume: 238
  issue: PA
  year: 2024
  ident: 10.1016/j.eswa.2023.123051_b0075
  article-title: A self-attention based contrastive learning method for bearing fault diagnosis
  publication-title: Expert Systems with Applications
– volume: 280
  year: 2023
  ident: 10.1016/j.eswa.2023.123051_b0095
  article-title: Intelligent fault diagnosis of worm gearbox based on adaptive CNN using amended gorilla troop optimization with quantum gate mutation strategy
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2023.110984
– ident: 10.1016/j.eswa.2023.123051_b0020
  doi: 10.1016/j.eswa.2023.119738
– volume: 24
  start-page: 1458
  issue: 5
  year: 2010
  ident: 10.1016/j.eswa.2023.123051_b0045
  article-title: Rolling element bearing faults diagnosis based on optimal Morlet wavelet filter and autocorrelation enhancement
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2009.11.011
– volume: 147
  year: 2021
  ident: 10.1016/j.eswa.2023.123051_b0185
  article-title: Method using L-kurtosis and enhanced clustering-based segmentation to detect faults in axial piston pumps
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2020.107130
– volume: 69
  start-page: 401
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2023.123051_b0190
  article-title: A Hybrid Prognostics Approach for Estimating Remaining Useful Life of Rolling Element Bearings
  publication-title: IEEE Transactions on Reliability
  doi: 10.1109/TR.2018.2882682
– volume: 27
  issue: 12
  year: 2016
  ident: 10.1016/j.eswa.2023.123051_b0055
  article-title: Rolling element bearing faults diagnosis based on kurtogram and frequency domain correlated kurtosis
  publication-title: Measurement Science and Technology
  doi: 10.1088/0957-0233/27/12/125019
– ident: 10.1016/j.eswa.2023.123051_b0100
  doi: 10.1016/j.eswa.2021.116290
– volume: 198
  issue: April
  year: 2023
  ident: 10.1016/j.eswa.2023.123051_b0125
  article-title: Collaborative fault diagnosis of rotating machinery via dual adversarial guided unsupervised multi-domain adaptation network
  publication-title: Mechanical Systems and Signal Processing
– volume: 215
  issue: July
  year: 2021
  ident: 10.1016/j.eswa.2023.123051_b0115
  article-title: Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning
  publication-title: Reliability Engineering and System Safety
– volume: 196
  issue: March
  year: 2022
  ident: 10.1016/j.eswa.2023.123051_b0165
  article-title: A compound fault diagnosis method of rolling bearing based on wavelet scattering transform and improved soft threshold denoising algorithm
  publication-title: Measurement
– volume: 25
  start-page: 1738
  issue: 5
  year: 2011
  ident: 10.1016/j.eswa.2023.123051_b0065
  article-title: Application of an improved kurtogram method for fault diagnosis of rolling element bearings
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2010.12.011
– volume: 70
  start-page: 186
  issue: July
  year: 2023
  ident: 10.1016/j.eswa.2023.123051_b0140
  article-title: Towards trustworthy rotating machinery fault diagnosis via attention uncertainty in transformer
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2023.07.012
– volume: 191
  issue: February
  year: 2023
  ident: 10.1016/j.eswa.2023.123051_b0155
  article-title: Difference mode decomposition for adaptive signal decomposition
  publication-title: Mechanical Systems and Signal Processing
– volume: 138
  start-page: 546
  year: 2023
  ident: 10.1016/j.eswa.2023.123051_b0015
  article-title: Cycle kurtosis entropy guided symplectic geometry mode decomposition for detecting faults in rotating machinery
  publication-title: ISA Transactions
  doi: 10.1016/j.isatra.2023.03.026
– volume: 33
  issue: 10
  year: 2022
  ident: 10.1016/j.eswa.2023.123051_b0175
  article-title: FEM simulation-determined band pass filter method with continuously changed bandwidth for fault detection in axial
  publication-title: Measurement Science and Technology
  doi: 10.1088/1361-6501/ac7bd5
– volume: 158
  year: 2020
  ident: 10.1016/j.eswa.2023.123051_b0030
  article-title: Latest developments in gear defect diagnosis and prognosis: A review
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107735
– volume: 104
  issue: July
  year: 2021
  ident: 10.1016/j.eswa.2023.123051_b0090
  article-title: Tacho-less sparse CNN to detect defects in rotor-bearing systems at varying speed
  publication-title: Engineering Applications of Artificial Intelligence
– ident: 10.1016/j.eswa.2023.123051_b0080
  doi: 10.1016/j.ress.2023.109768
– volume: 174
  issue: March
  year: 2022
  ident: 10.1016/j.eswa.2023.123051_b0160
  article-title: Understanding importance of positive and negative signs of optimized weights used in the sum of weighted normalized Fourier spectrum/envelope spectrum for machine condition monitoring
  publication-title: Mechanical Systems and Signal Processing
– volume: 74
  start-page: 73
  year: 2016
  ident: 10.1016/j.eswa.2023.123051_b0050
  article-title: The infogram: Entropic evidence of the signature of repetitive transients
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2015.04.034
– ident: 10.1016/j.eswa.2023.123051_b0070
  doi: 10.1016/j.eswa.2023.121216
– volume: 96
  start-page: 289
  year: 2016
  ident: 10.1016/j.eswa.2023.123051_b0025
  article-title: A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings
  publication-title: Tribology International
  doi: 10.1016/j.triboint.2015.12.037
– volume: 61
  start-page: 3999
  issue: 16
  year: 2013
  ident: 10.1016/j.eswa.2023.123051_b0060
  article-title: Empirical wavelet transform
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2013.2265222
– volume: 25
  start-page: 431
  issue: 1
  year: 2011
  ident: 10.1016/j.eswa.2023.123051_b0040
  article-title: A novel method for the optimal band selection for vibration signal demodulation and comparison with the Kurtogram
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2010.05.018
– ident: 10.1016/j.eswa.2023.123051_b0010
  doi: 10.1016/j.eswa.2020.114094
– ident: 10.1016/j.eswa.2023.123051_b0105
  doi: 10.1016/j.eswa.2023.119738
– ident: 10.1016/j.eswa.2023.123051_b0195
  doi: 10.1016/j.ymssp.2021.108333
– ident: 10.1016/j.eswa.2023.123051_b0135
  doi: 10.1016/j.aei.2023.101883
– volume: 16
  start-page: 4961
  issue: 7
  year: 2020
  ident: 10.1016/j.eswa.2023.123051_b0110
  article-title: FEM Simulation-Based Generative Adversarial Networks to Detect Bearing Faults
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2020.2968370
– volume: 95
  start-page: 346
  year: 2019
  ident: 10.1016/j.eswa.2023.123051_b0150
  article-title: ACCUGRAM: A novel approach based on classification to frequency band selection for rotating machinery fault diagnosis
  publication-title: ISA Transactions
  doi: 10.1016/j.isatra.2019.05.007
– volume: 230
  issue: March
  year: 2023
  ident: 10.1016/j.eswa.2023.123051_b0130
  article-title: Generalized MAML for few-shot cross-domain fault diagnosis of bearing driven by heterogeneous signals
  publication-title: Expert Systems with Applications
SSID ssj0017007
Score 2.510917
Snippet The extraction of fault resonance bands from a full frequency band has always stood as a classical and effective strategy for fault diagnosis in rotating...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 123051
SubjectTerms Differgram
Fault diagnosis
Fault frequency band extraction
The importance of health signals
Title Differgram: A convex optimization-based method for extracting optimal frequency band for fault diagnosis of rotating machinery
URI https://dx.doi.org/10.1016/j.eswa.2023.123051
Volume 245
WOSCitedRecordID wos001155989000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMX3ojy0h64RY4cr-319hZBESBUISgiN8te77apUrtK7ZJe-Bn8Xmb2YZcWVYDExYpWs3GU-Twznp35hpCXjHMGXrGAB0mEAcT_aSASHgWxjkMpM1kUlZla8oHv7WWLhfg4Gv3wvTBnK17X2WYjTv6rqmENlI2ts3-h7v5LYQE-g9LhCmqH6x8p_rUZeYJFV7br3NSVbyYN2IZj13QZoO-q3PRoS_q9aU27FJZAoyC2Na5tlfX5pMTkOkrpolu1mK7F6jxLZLJu8Cwfth2bqsxLHdaGSLl1dNG-ke7CkXlf_dPZAyDMsBx2Q5XQsjMuYtnbJpfd_tTUBweFc7rmSMsYz69qqf2qy2REcV_16tJrvsVmqGeyeUoexDM7ymeqrJXOOAtSbkcrejMeWVrKKy7BZieOpur0G_JMRWwKzjp0LLe_Um1_xpvhvUAA4jAW3yBbEU9ENiZb83e7i_f9-RQPbSO-_3GuHctWDl6-0-9DngthzP5dctu9f9C5xc09MlL1fXLHz_agztQ_IN8HGO3QObUgoldBRC2IKMCDDiCiDkS0BxFFEBkpAyLag4g2mnoQ0R5ED8mXN7v7r94GblZHIFkYtkGZpaJEpqMZ10kpJVdMMiV0FIqMVWFSKsV4gUNFdJTpUpYYh7JYslSHgmnBHpFx3dTqMaFVUqZVBWJFEsWlTLICGRuqWQWv1kpyvU1m_u_MpSOyx3kqq9xXLB7lqIIcVZBbFWyTSb_nxNK4XCudeC3lLhC1AWYOoLpm35N_3PeU3Bqeh2dk3K479ZzclGft8nT9wmHvJ2TNsqc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differgram%3A+A+convex+optimization-based+method+for+extracting+optimal+frequency+band+for+fault+diagnosis+of+rotating+machinery&rft.jtitle=Expert+systems+with+applications&rft.au=Guo%2C+Jianchun&rft.au=Liu%2C+Yi&rft.au=Yang%2C+Ronggang&rft.au=Sun%2C+Weifang&rft.date=2024-07-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=245&rft_id=info:doi/10.1016%2Fj.eswa.2023.123051&rft.externalDocID=S0957417423035534
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon