Optimality conditions and duality for nonsmooth multiobjective semi-infinite programming problems with vanishing constraints on Hadamard manifolds

This article is concerned with nonsmooth multiobjective semi-infinite programming problems with vanishing constraints in the setting of Hadamard manifolds (abbreviated as, (NMSIPVC)). We present the Abadie constraint qualification (abbreviated as, (ACQ)) and a modified version of (ACQ), namely, (NMS...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of mathematical analysis and applications Ročník 531; číslo 1; s. 127785
Hlavní autoři: Upadhyay, B.B., Ghosh, Arnav, Treanţă, Savin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.03.2024
Témata:
ISSN:0022-247X, 1096-0813
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This article is concerned with nonsmooth multiobjective semi-infinite programming problems with vanishing constraints in the setting of Hadamard manifolds (abbreviated as, (NMSIPVC)). We present the Abadie constraint qualification (abbreviated as, (ACQ)) and a modified version of (ACQ), namely, (NMSIPVC)-tailored Abadie constraint qualification (abbreviated as, (NMSIPVC-ACQ)), for (NMSIPVC). The Karush-Kuhn-Tucker (abbreviated as, KKT) type necessary criteria of optimality for (NMSIPVC) are derived by employing (ACQ) and (NMSIPVC-ACQ). Moreover, sufficient criteria of optimality for (NMSIPVC) are derived under generalized geodesic convexity hypotheses and certain mild restrictions on the index sets. Further, we formulate Wolfe type and Mond-Weir type dual models related to (NMSIPVC) and derive several duality results that relate (NMSIPVC) and the corresponding dual models. Non-trivial numerical examples are incorporated to demonstrate the validity of the results established in this paper. To the best of our knowledge, this is for the first time that constraint qualifications, optimality conditions, and duality results have been investigated for (NMSIPVC) in the setting of Hadamard manifolds.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2023.127785