Multi-step prediction model enhanced by adaptive denoising and encoder-decoder for shield machine cutterhead torque in complex conditions

•A multi-step prediction model for cutterhead torque is proposed.•Adaptive denoising and encoder-decoder are used to improve the model performance.•The model was validated using site data from the Heyan Road tunnel project.•This model has promising performance in complex geological and working condi...

Full description

Saved in:
Bibliographic Details
Published in:Tunnelling and underground space technology Vol. 158; p. 106398
Main Authors: Xu, Deming, Wang, Yuan, Huang, Jingqi, Xu, Shujun, Zhou, Kun
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.04.2025
Subjects:
ISSN:0886-7798
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A multi-step prediction model for cutterhead torque is proposed.•Adaptive denoising and encoder-decoder are used to improve the model performance.•The model was validated using site data from the Heyan Road tunnel project.•This model has promising performance in complex geological and working conditions. Cutterhead torque reflects the obstruction extent of geological environment on the shield machine, and its prediction can assist operators to adjust control parameters to improve construction efficiency and avoid machine jamming. However, tunneling in complex geological or working conditions often results in high cutterhead torque fluctuations and noise, which seriously affects the accuracy of torque prediction. This study proposes a multi-step prediction model for cutterhead torque enhanced by adaptive denoising and encoder-decoder. In this model, a novel adaptive denoising method for cutterhead torque is employed to improve prediction accuracy under complex conditions. Moreover, by introducing encoder-decoder method, the processing capability for multi-time dimensional data and multi-step prediction performance of LSTM neural networks are further improved. The effectiveness of proposed model is verified through an application to the Heyan Road River Crossing project. The results of this study can assist operators in achieving precise adjustment of control parameters under complex conditions.
AbstractList •A multi-step prediction model for cutterhead torque is proposed.•Adaptive denoising and encoder-decoder are used to improve the model performance.•The model was validated using site data from the Heyan Road tunnel project.•This model has promising performance in complex geological and working conditions. Cutterhead torque reflects the obstruction extent of geological environment on the shield machine, and its prediction can assist operators to adjust control parameters to improve construction efficiency and avoid machine jamming. However, tunneling in complex geological or working conditions often results in high cutterhead torque fluctuations and noise, which seriously affects the accuracy of torque prediction. This study proposes a multi-step prediction model for cutterhead torque enhanced by adaptive denoising and encoder-decoder. In this model, a novel adaptive denoising method for cutterhead torque is employed to improve prediction accuracy under complex conditions. Moreover, by introducing encoder-decoder method, the processing capability for multi-time dimensional data and multi-step prediction performance of LSTM neural networks are further improved. The effectiveness of proposed model is verified through an application to the Heyan Road River Crossing project. The results of this study can assist operators in achieving precise adjustment of control parameters under complex conditions.
ArticleNumber 106398
Author Wang, Yuan
Zhou, Kun
Xu, Deming
Huang, Jingqi
Xu, Shujun
Author_xml – sequence: 1
  givenname: Deming
  surname: Xu
  fullname: Xu, Deming
  organization: Beijing Key Laboratory of Urban Underground Space Engineering, School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China
– sequence: 2
  givenname: Yuan
  surname: Wang
  fullname: Wang, Yuan
  organization: Beijing Key Laboratory of Urban Underground Space Engineering, School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China
– sequence: 3
  givenname: Jingqi
  surname: Huang
  fullname: Huang, Jingqi
  email: huangjingqi11@163.com
  organization: Beijing Key Laboratory of Urban Underground Space Engineering, School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China
– sequence: 4
  givenname: Shujun
  surname: Xu
  fullname: Xu, Shujun
  organization: China Railway 14th Bureau Group Co, Ltd, Nanjing, Jiangsu 210098, China
– sequence: 5
  givenname: Kun
  surname: Zhou
  fullname: Zhou, Kun
  organization: China Railway 14th Bureau Group Co, Ltd, Nanjing, Jiangsu 210098, China
BookMark eNp9kEtOwzAQhr0oEi1wAVa-QIrtNI9KbFDFSwKxgbXleCZ0qtQOtlvRI3BrEsqKBatfGs03j2_GJs47ZOxSirkUsrzazNMuprkSqhgKZb6sJ2wq6rrMqmpZn7JZjBshRKHUcsq-nnddoiwm7HkfEMgm8o5vPWDH0a2Nswi8OXADpk-0Rw7oPEVy79w4GFrs0BoywJ_krQ88rgk74Ftj1-SQ211KGNZogCcfPnbIyXHrt32Hn0M6oHFlPGcnrekiXvzmGXu7u31dPWRPL_ePq5unzOZCpMwAFE3ewMK0qrL5Uiq5kFVVWyWaXDSikaUqi9pikbfQtmBM0diqXUiBFVSmyM-YOs61wccYsNV9oK0JBy2FHgXqjR4F6lGgPgocoPoPZCmZ8e4UDHX_o9dHFIen9oRBR0s4aqWANmnw9B_-DRLglUc
CitedBy_id crossref_primary_10_1016_j_iintel_2025_100166
crossref_primary_10_1016_j_conbuildmat_2025_141234
crossref_primary_10_1016_j_soildyn_2025_109443
crossref_primary_10_1016_j_tust_2025_107123
crossref_primary_10_1016_j_rineng_2025_105898
crossref_primary_10_1016_j_tust_2025_107044
crossref_primary_10_1016_j_tust_2025_106660
Cites_doi 10.1016/j.ymssp.2020.107386
10.1016/j.tust.2013.09.004
10.1016/j.sigpro.2016.02.011
10.1016/j.autcon.2018.03.030
10.1016/j.bspc.2020.102337
10.3390/electronics7120450
10.1016/j.jrmge.2022.03.002
10.1016/j.ymssp.2022.109148
10.1016/B978-0-12-820127-5.00004-6
10.1016/j.tust.2020.103699
10.1016/j.autcon.2011.04.010
10.1016/j.autcon.2021.103741
10.1016/j.isatra.2020.10.022
10.1007/s00603-021-02714-6
10.1016/j.autcon.2016.12.004
10.1016/j.knosys.2021.107213
10.1016/j.asoc.2022.108686
10.1016/j.measurement.2020.107901
10.1016/j.autcon.2018.11.013
10.1162/neco.1997.9.8.1735
10.1016/j.jhydrol.2020.124631
10.1016/j.simpat.2010.03.005
10.1016/j.tust.2019.103002
10.1016/j.jhydrol.2021.126378
10.1016/j.jhydrol.2021.126526
10.1016/j.eng.2020.02.016
10.1016/j.tust.2018.01.025
10.1007/978-3-7091-8452-3_3
10.1016/j.undsp.2023.05.006
10.1016/j.jrmge.2021.11.008
10.1016/j.ymssp.2021.108312
10.1109/TSP.2013.2288675
10.1016/j.tust.2020.103593
10.1016/j.tust.2020.103677
10.1016/j.optcom.2014.03.083
10.1016/j.energy.2020.118371
10.1016/j.ijepes.2019.105771
10.1016/j.ymssp.2020.106664
10.1016/j.measurement.2021.109277
10.1016/j.tust.2017.09.016
10.1016/j.apenergy.2021.117461
10.1016/j.tust.2016.04.002
10.1080/21642583.2019.1708830
10.1016/j.measurement.2021.109815
10.1162/neco_a_01199
10.1016/j.measurement.2019.106941
10.1016/j.autcon.2018.05.020
10.1016/j.isatra.2020.12.041
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.tust.2025.106398
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_tust_2025_106398
S0886779825000367
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACLVX
ACNNM
ACRLP
ACRPL
ACSBN
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
JJJVA
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEP
SES
SET
SEW
SPC
SPCBC
SSE
SST
SSZ
T5K
WUQ
ZMT
~02
~G-
9DU
AATTM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-add5b3bd4af27c3912141778c20b30b0b162658ce53fdffdaa5bc7f410e7d7a53
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001401883500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0886-7798
IngestDate Sat Nov 29 08:10:02 EST 2025
Tue Nov 18 22:40:01 EST 2025
Sat Mar 08 15:44:44 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Shield machine
Long short-term memory
Cutterhead torque
Encoder-decoder model
Multi-step prediction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-add5b3bd4af27c3912141778c20b30b0b162658ce53fdffdaa5bc7f410e7d7a53
ParticipantIDs crossref_primary_10_1016_j_tust_2025_106398
crossref_citationtrail_10_1016_j_tust_2025_106398
elsevier_sciencedirect_doi_10_1016_j_tust_2025_106398
PublicationCentury 2000
PublicationDate April 2025
2025-04-00
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: April 2025
PublicationDecade 2020
PublicationTitle Tunnelling and underground space technology
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Dragomiretskiy, Zosso (b0040) 2014; 62
Elbaz, Shen, Zhou, Yin, Lyu (b0045) 2021; 7
Zhao, Pan, Wang, Yu (b0250) 2017; 76
Huang (b0090) 2020
Rostami, Ozdemir (b0155) 1993
Shi, Yang, Gong, Wang (b0165) 2011; 20
Avunduk, Copur (b0015) 2018; 71
Wang, Yang, Gong, Du (b0190) 2018; 93
Fu, Feng, Zhang (b0055) 2022; 120
Hochreiter, Schmidhuber (b0085) 1997; 9
Xue, Shen (b0200) 2020; 8
Huo, Xu, Meng, Li, Dong, Wang (b0105) 2020; 140
Zhao, Gong, Tian, Zhou, Jiang (b0255) 2019; 91
Krause, H. 1976. Geologische Erfahrungen beim Einsatz von Tunnelvortriebsmaschinen in Baden-Württemberg.
Gao, Shi, Song, Zhang, Zhang (b0065) 2019; 98
Yin, Zhang, Wang, Zhang, Xia, Jin (b0225) 2021; 598
Zhang, Li, Zhang (b0235) 2020; 213
Butusov, Karimov, Voznesenskiy, Kaplun, Andreev, Ostrovskii (b0025) 2018; 7
Chen, Wang, Jiao (b0030) 2021
Gai, Shen, Hu, Wang (b0060) 2020; 162
Zhang, Wu, Chen, Dai, Meng, Wang (b0240) 2020; 106
Qin, Shi, Tao, Yu, Jin, Xiao, Zhang, Liu (b0150) 2022; 175
Xu, Liu, Wang, Wang (b0195) 2021; 109
Yan, Shen, Zhou, Chen (b0210) 2022
Shi, Qin, Tao, Liu (b0160) 2021; 228
Kang, Chen, Li, Luo, Liu (b0115) 2023; 13
Alizadeh, Ghaderi Bafti, Kamangir, Zhang, Wright, Franz (b0005) 2021; 601
Tian, Cao, Liang, Zhang, Yi, Wang, Cheng (b0180) 2014; 325
Wang, Xie, Shahrour, Huang (b0185) 2021; 128
Yao, Zhou, Wang, Hu, Liu (b0220) 2021; 177
Yao, Wang, Liu, Wang, Shang (b0215) 2021; 109
Feng, Wei, Qi, Pei, Wang (b0050) 2021; 184
Jin, Qin, Tao, Liu (b0110) 2022; 165
Zhang, Yu, Liu, Lai (b0245) 2010; 18
Ates, Bilgin, Copur (b0010) 2014; 40
Géron (b0070) 2019
Qin, Shi, Tao, Yu, Jin, Lei, Liu (b0145) 2021; 151
Yan, Shen, Zhou (b0205) 2022
Gong, Yin, Ma, Zhao (b0075) 2016; 57
Sun, Shi, Zhang, Zhao, Song (b0175) 2018; 92
Yu, Si, Hu, Zhang (b0230) 2019; 31
Dibaj, Hassannejad, Ettefagh, Ehghaghi (b0035) 2021; 114
Bai, Liu, Ding, Ma (b0020) 2021; 301
Kaur, Bisht, Singh, Joshi (b0125) 2021; 65
Sun, Lin, Jiang, Wang, Chen, Zhong (b0170) 2020; 118
Kao, Zhou, Chang, Chang (b0120) 2020; 583
Huang, Zhang, Liu, Liu, Liu, Wang, Yin (b0100) 2022; 14
Gu, Chen, Hong, Wang, Wu (b0080) 2020; 149
Huang, Ninić, Zhang (b0095) 2021; 108
Springer, 49-60.
Zhou, Zhai (b0260) 2018; 74
Liu, Yang, Li, Yin (b0140) 2016; 125
Liu, Liao, Men, Xing, Liu, Sun (b0135) 2022; 55
Butusov (10.1016/j.tust.2025.106398_b0025) 2018; 7
Liu (10.1016/j.tust.2025.106398_b0140) 2016; 125
Xue (10.1016/j.tust.2025.106398_b0200) 2020; 8
Yan (10.1016/j.tust.2025.106398_b0205) 2022
Jin (10.1016/j.tust.2025.106398_b0110) 2022; 165
Zhang (10.1016/j.tust.2025.106398_b0240) 2020; 106
Elbaz (10.1016/j.tust.2025.106398_b0045) 2021; 7
Fu (10.1016/j.tust.2025.106398_b0055) 2022; 120
Bai (10.1016/j.tust.2025.106398_b0020) 2021; 301
Gao (10.1016/j.tust.2025.106398_b0065) 2019; 98
Feng (10.1016/j.tust.2025.106398_b0050) 2021; 184
Kang (10.1016/j.tust.2025.106398_b0115) 2023; 13
Qin (10.1016/j.tust.2025.106398_b0150) 2022; 175
Shi (10.1016/j.tust.2025.106398_b0160) 2021; 228
Sun (10.1016/j.tust.2025.106398_b0170) 2020; 118
Chen (10.1016/j.tust.2025.106398_b0030) 2021
10.1016/j.tust.2025.106398_b0130
Zhang (10.1016/j.tust.2025.106398_b0245) 2010; 18
Zhao (10.1016/j.tust.2025.106398_b0255) 2019; 91
Yu (10.1016/j.tust.2025.106398_b0230) 2019; 31
Gai (10.1016/j.tust.2025.106398_b0060) 2020; 162
Alizadeh (10.1016/j.tust.2025.106398_b0005) 2021; 601
Kaur (10.1016/j.tust.2025.106398_b0125) 2021; 65
Wang (10.1016/j.tust.2025.106398_b0190) 2018; 93
Rostami (10.1016/j.tust.2025.106398_b0155) 1993
Zhao (10.1016/j.tust.2025.106398_b0250) 2017; 76
Yan (10.1016/j.tust.2025.106398_b0210) 2022
Géron (10.1016/j.tust.2025.106398_b0070) 2019
Hochreiter (10.1016/j.tust.2025.106398_b0085) 1997; 9
Zhou (10.1016/j.tust.2025.106398_b0260) 2018; 74
Shi (10.1016/j.tust.2025.106398_b0165) 2011; 20
Dibaj (10.1016/j.tust.2025.106398_b0035) 2021; 114
Dragomiretskiy (10.1016/j.tust.2025.106398_b0040) 2014; 62
Qin (10.1016/j.tust.2025.106398_b0145) 2021; 151
Tian (10.1016/j.tust.2025.106398_b0180) 2014; 325
Xu (10.1016/j.tust.2025.106398_b0195) 2021; 109
Yin (10.1016/j.tust.2025.106398_b0225) 2021; 598
Gu (10.1016/j.tust.2025.106398_b0080) 2020; 149
Gong (10.1016/j.tust.2025.106398_b0075) 2016; 57
Huang (10.1016/j.tust.2025.106398_b0095) 2021; 108
Huang (10.1016/j.tust.2025.106398_b0090) 2020
Huang (10.1016/j.tust.2025.106398_b0100) 2022; 14
Kao (10.1016/j.tust.2025.106398_b0120) 2020; 583
Wang (10.1016/j.tust.2025.106398_b0185) 2021; 128
Liu (10.1016/j.tust.2025.106398_b0135) 2022; 55
Sun (10.1016/j.tust.2025.106398_b0175) 2018; 92
Avunduk (10.1016/j.tust.2025.106398_b0015) 2018; 71
Yao (10.1016/j.tust.2025.106398_b0220) 2021; 177
Huo (10.1016/j.tust.2025.106398_b0105) 2020; 140
Yao (10.1016/j.tust.2025.106398_b0215) 2021; 109
Zhang (10.1016/j.tust.2025.106398_b0235) 2020; 213
Ates (10.1016/j.tust.2025.106398_b0010) 2014; 40
References_xml – volume: 91
  year: 2019
  ident: b0255
  article-title: Torque fluctuation fluctuation analysis and penetration prediction of EPB TBM in rock-soil interface mixed ground
  publication-title: Tunn. Undergr. Space Technol.
– volume: 162
  year: 2020
  ident: b0060
  article-title: An integrated method based on hybrid grey wolf optimizer improved variational mode decomposition and deep neural network for fault diagnosis of rolling bearing
  publication-title: Measurement
– volume: 71
  start-page: 340
  year: 2018
  end-page: 353
  ident: b0015
  article-title: Empirical modeling for predicting excavation performance of EPB TBM based on soil properties
  publication-title: Tunn. Undergr. Space Technol.
– volume: 213
  year: 2020
  ident: b0235
  article-title: Short-term wind power forecasting approach based on Seq2Seq model using NWP data
  publication-title: Energy
– reference: . Springer, 49-60.
– volume: 18
  start-page: 1019
  year: 2010
  end-page: 1031
  ident: b0245
  article-title: Dynamic characteristic analysis of TBM tunnelling in mixed-face conditions
  publication-title: Simul. Model. Pract. Theory
– volume: 325
  start-page: 54
  year: 2014
  end-page: 59
  ident: b0180
  article-title: Improved empirical mode decomposition based denoising method for lidar signals
  publication-title: Opt. Commun.
– volume: 128
  year: 2021
  ident: b0185
  article-title: Use of deep learning, denoising technic and cross-correlation analysis for the prediction of the shield machine slurry pressure in mixed ground conditions
  publication-title: Autom. Constr.
– volume: 140
  year: 2020
  ident: b0105
  article-title: Coupled modeling and dynamic characteristics of TBM cutterhead system under uncertain factors
  publication-title: Mech. Syst. Sig. Process.
– volume: 165
  year: 2022
  ident: b0110
  article-title: An accurate and adaptative cutterhead torque prediction method for shield tunneling machines via adaptative residual long-short term memory network
  publication-title: Mech. Syst. Sig. Process.
– volume: 57
  start-page: 4
  year: 2016
  end-page: 17
  ident: b0075
  article-title: TBM tunnelling under adverse geological conditions: An overview
  publication-title: Tunn. Undergr. Space Technol.
– volume: 55
  start-page: 1481
  year: 2022
  end-page: 1498
  ident: b0135
  article-title: Field Monitoring of TBM Vibration During Excavating Changing Stratum: Patterns and Ground Identification
  publication-title: Rock Mech. Rock Eng.
– volume: 20
  start-page: 1087
  year: 2011
  end-page: 1095
  ident: b0165
  article-title: Determination of the cutterhead torque for EPB shield tunneling machine
  publication-title: Autom. Constr.
– volume: 114
  start-page: 413
  year: 2021
  end-page: 433
  ident: b0035
  article-title: Incipient fault diagnosis of bearings based on parameter-optimized VMD and envelope spectrum weighted kurtosis index with a new sensitivity assessment threshold
  publication-title: ISA Trans.
– volume: 62
  start-page: 531
  year: 2014
  end-page: 544
  ident: b0040
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
– volume: 65
  year: 2021
  ident: b0125
  article-title: EEG Signal denoising using hybrid approach of Variational Mode Decomposition and wavelets for depression
  publication-title: Biomed. Signal Process. Control
– volume: 74
  start-page: 217
  year: 2018
  end-page: 229
  ident: b0260
  article-title: Estimation of the cutterhead torque for earth pressure balance TBM under mixed-face conditions
  publication-title: Tunn. Undergr. Space Technol.
– volume: 7
  start-page: 238
  year: 2021
  end-page: 251
  ident: b0045
  article-title: Prediction of disc cutter life during shield tunneling with AI via the incorporation of a genetic algorithm into a GMDH-type neural network
  publication-title: Engineering
– volume: 108
  year: 2021
  ident: b0095
  article-title: BIM, machine learning and computer vision techniques in underground construction: Current status and future perspectives
  publication-title: Tunn. Undergr. Space Technol.
– volume: 93
  start-page: 192
  year: 2018
  end-page: 199
  ident: b0190
  article-title: Pose and trajectory control of shield tunneling machine in complicated stratum
  publication-title: Autom. Constr.
– volume: 40
  start-page: 46
  year: 2014
  end-page: 63
  ident: b0010
  article-title: Estimating torque, thrust and other design parameters of different type TBMs with some criticism to TBMs used in Turkish tunneling projects
  publication-title: Tunn. Undergr. Space Technol.
– year: 2022
  ident: b0205
  article-title: Identification of geological characteristics from construction parameters during shield tunnelling
  publication-title: Acta Geotech.
– volume: 598
  year: 2021
  ident: b0225
  article-title: Rainfall-runoff modeling using LSTM-based multi-state-vector sequence-to-sequence model
  publication-title: J. Hydrol.
– volume: 601
  year: 2021
  ident: b0005
  article-title: A novel attention-based LSTM cell post-processor coupled with bayesian optimization for streamflow prediction
  publication-title: J. Hydrol.
– volume: 184
  year: 2021
  ident: b0050
  article-title: A transient electromagnetic signal denoising method based on an improved variational mode decomposition algorithm
  publication-title: Measurement
– start-page: 119
  year: 2021
  end-page: 161
  ident: b0030
  article-title: Shield machine type selection
  publication-title: . Elsevier
– volume: 109
  year: 2021
  ident: b0195
  article-title: Prediction of tunnel boring machine operating parameters using various machine learning algorithms
  publication-title: Tunn. Undergr. Space Technol.
– volume: 109
  start-page: 315
  year: 2021
  end-page: 326
  ident: b0215
  article-title: An improved low-frequency noise reduction method in shock wave pressure measurement based on mode classification and recursion extraction
  publication-title: ISA Trans.
– year: 2019
  ident: b0070
  article-title: Hands-on machine learning with Scikit-Learn, Keras
  publication-title: And TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems
– start-page: 600
  year: 2020
  end-page: 607
  ident: b0090
  publication-title: Real-Time Aarly Warning of Clogging Risk in Slurry Shield Tunneling: A Self-Updating Machine Learning Approach
– volume: 118
  year: 2020
  ident: b0170
  article-title: A novel adaptive single-phase reclosure scheme based on improved variational mode decomposition and energy entropy
  publication-title: Int. J. Electr. Power Energy Syst.
– year: 2022
  ident: b0210
  article-title: Prediction of geological characteristics from shield operational parameters by integrating grid search and K-fold cross validation into stacking classification algorithm
  publication-title: J. Rock Mech. Geotech. Eng.
– volume: 120
  year: 2022
  ident: b0055
  article-title: Data-driven estimation of TBM performance in soft soils using density-based spatial clustering and random forest
  publication-title: Appl. Soft Comput.
– volume: 125
  start-page: 349
  year: 2016
  end-page: 364
  ident: b0140
  article-title: Variational mode decomposition denoising combined the detrended fluctuation analysis
  publication-title: Signal Process.
– volume: 7
  start-page: 450
  year: 2018
  ident: b0025
  article-title: Filtering Techniques for Chaotic Signal Processing
  publication-title: Electronics
– volume: 13
  start-page: 335
  year: 2023
  end-page: 350
  ident: b0115
  article-title: Attention-based LSTM predictive model for the attitude and position of shield machine in tunneling
  publication-title: Underground Space
– volume: 151
  year: 2021
  ident: b0145
  article-title: Precise cutterhead torque prediction for shield tunneling machines using a novel hybrid deep neural network
  publication-title: Mech. Syst. Sig. Process.
– reference: Krause, H. 1976. Geologische Erfahrungen beim Einsatz von Tunnelvortriebsmaschinen in Baden-Württemberg.
– volume: 106
  year: 2020
  ident: b0240
  article-title: A critical evaluation of machine learning and deep learning in shield-ground interaction prediction
  publication-title: Tunn. Undergr. Space Technol.
– volume: 92
  start-page: 23
  year: 2018
  end-page: 34
  ident: b0175
  article-title: Dynamic load prediction of tunnel boring machine (TBM) based on heterogeneous in-situ data
  publication-title: Autom. Constr.
– volume: 31
  start-page: 1235
  year: 2019
  end-page: 1270
  ident: b0230
  article-title: A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures
  publication-title: Neural Comput.
– volume: 583
  year: 2020
  ident: b0120
  article-title: Exploring a Long Short-Term Memory based Encoder-Decoder framework for multi-step-ahead flood forecasting
  publication-title: J. Hydrol.
– volume: 8
  start-page: 22
  year: 2020
  end-page: 34
  ident: b0200
  article-title: A novel swarm intelligence optimization approach: sparrow search algorithm
  publication-title: Syst. Sci. Control Eng.
– volume: 177
  year: 2021
  ident: b0220
  article-title: An adaptive seismic signal denoising method based on variational mode decomposition
  publication-title: Measurement
– volume: 301
  year: 2021
  ident: b0020
  article-title: Double-layer staged training echo-state networks for wind speed prediction using variational mode decomposition
  publication-title: Appl. Energy
– volume: 98
  start-page: 225
  year: 2019
  end-page: 235
  ident: b0065
  article-title: Recurrent neural networks for real-time prediction of TBM operating parameters
  publication-title: Autom. Constr.
– start-page: 793
  year: 1993
  end-page: 809
  ident: b0155
  article-title: New model for performance production of hard rock TBMs
– volume: 14
  year: 2022
  ident: b0100
  article-title: A real-time prediction method for tunnel boring machine cutter-head torque using bidirectional long short-term memory networks optimized by multi-algorithm
  publication-title: J. Rock Mech. Geotech. Eng.
– volume: 175
  year: 2022
  ident: b0150
  article-title: An adaptive hierarchical decomposition-based method for multi-step cutterhead torque forecast of shield machine
  publication-title: Mech. Syst. Sig. Process.
– volume: 228
  year: 2021
  ident: b0160
  article-title: A VMD-EWT-LSTM-based multi-step prediction approach for shield tunneling machine cutterhead torque
  publication-title: Knowl.-Based Syst.
– volume: 76
  start-page: 97
  year: 2017
  end-page: 107
  ident: b0250
  article-title: Dynamics research on grouping characteristics of a shield tunneling machine's thrust system
  publication-title: Autom. Constr.
– volume: 149
  year: 2020
  ident: b0080
  article-title: Incipient fault diagnosis of rolling bearings based on adaptive variational mode decomposition and Teager energy operator
  publication-title: Measurement
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0085
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 151
  year: 2021
  ident: 10.1016/j.tust.2025.106398_b0145
  article-title: Precise cutterhead torque prediction for shield tunneling machines using a novel hybrid deep neural network
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2020.107386
– volume: 40
  start-page: 46
  year: 2014
  ident: 10.1016/j.tust.2025.106398_b0010
  article-title: Estimating torque, thrust and other design parameters of different type TBMs with some criticism to TBMs used in Turkish tunneling projects
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2013.09.004
– volume: 125
  start-page: 349
  year: 2016
  ident: 10.1016/j.tust.2025.106398_b0140
  article-title: Variational mode decomposition denoising combined the detrended fluctuation analysis
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.02.011
– volume: 92
  start-page: 23
  year: 2018
  ident: 10.1016/j.tust.2025.106398_b0175
  article-title: Dynamic load prediction of tunnel boring machine (TBM) based on heterogeneous in-situ data
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2018.03.030
– volume: 65
  year: 2021
  ident: 10.1016/j.tust.2025.106398_b0125
  article-title: EEG Signal denoising using hybrid approach of Variational Mode Decomposition and wavelets for depression
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102337
– volume: 7
  start-page: 450
  year: 2018
  ident: 10.1016/j.tust.2025.106398_b0025
  article-title: Filtering Techniques for Chaotic Signal Processing
  publication-title: Electronics
  doi: 10.3390/electronics7120450
– year: 2022
  ident: 10.1016/j.tust.2025.106398_b0210
  article-title: Prediction of geological characteristics from shield operational parameters by integrating grid search and K-fold cross validation into stacking classification algorithm
  publication-title: J. Rock Mech. Geotech. Eng.
  doi: 10.1016/j.jrmge.2022.03.002
– volume: 175
  year: 2022
  ident: 10.1016/j.tust.2025.106398_b0150
  article-title: An adaptive hierarchical decomposition-based method for multi-step cutterhead torque forecast of shield machine
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2022.109148
– start-page: 119
  year: 2021
  ident: 10.1016/j.tust.2025.106398_b0030
  article-title: Shield machine type selection
  publication-title: Shield Construction Techniques in Tunneling. Elsevier
  doi: 10.1016/B978-0-12-820127-5.00004-6
– volume: 109
  year: 2021
  ident: 10.1016/j.tust.2025.106398_b0195
  article-title: Prediction of tunnel boring machine operating parameters using various machine learning algorithms
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2020.103699
– volume: 20
  start-page: 1087
  year: 2011
  ident: 10.1016/j.tust.2025.106398_b0165
  article-title: Determination of the cutterhead torque for EPB shield tunneling machine
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2011.04.010
– volume: 128
  year: 2021
  ident: 10.1016/j.tust.2025.106398_b0185
  article-title: Use of deep learning, denoising technic and cross-correlation analysis for the prediction of the shield machine slurry pressure in mixed ground conditions
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.103741
– volume: 109
  start-page: 315
  year: 2021
  ident: 10.1016/j.tust.2025.106398_b0215
  article-title: An improved low-frequency noise reduction method in shock wave pressure measurement based on mode classification and recursion extraction
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2020.10.022
– year: 2019
  ident: 10.1016/j.tust.2025.106398_b0070
  article-title: Hands-on machine learning with Scikit-Learn, Keras
– volume: 55
  start-page: 1481
  year: 2022
  ident: 10.1016/j.tust.2025.106398_b0135
  article-title: Field Monitoring of TBM Vibration During Excavating Changing Stratum: Patterns and Ground Identification
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-021-02714-6
– start-page: 600
  year: 2020
  ident: 10.1016/j.tust.2025.106398_b0090
– volume: 76
  start-page: 97
  year: 2017
  ident: 10.1016/j.tust.2025.106398_b0250
  article-title: Dynamics research on grouping characteristics of a shield tunneling machine's thrust system
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2016.12.004
– volume: 228
  year: 2021
  ident: 10.1016/j.tust.2025.106398_b0160
  article-title: A VMD-EWT-LSTM-based multi-step prediction approach for shield tunneling machine cutterhead torque
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107213
– volume: 120
  year: 2022
  ident: 10.1016/j.tust.2025.106398_b0055
  article-title: Data-driven estimation of TBM performance in soft soils using density-based spatial clustering and random forest
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.108686
– volume: 162
  year: 2020
  ident: 10.1016/j.tust.2025.106398_b0060
  article-title: An integrated method based on hybrid grey wolf optimizer improved variational mode decomposition and deep neural network for fault diagnosis of rolling bearing
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107901
– volume: 98
  start-page: 225
  year: 2019
  ident: 10.1016/j.tust.2025.106398_b0065
  article-title: Recurrent neural networks for real-time prediction of TBM operating parameters
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2018.11.013
– volume: 9
  start-page: 1735
  year: 1997
  ident: 10.1016/j.tust.2025.106398_b0085
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 583
  year: 2020
  ident: 10.1016/j.tust.2025.106398_b0120
  article-title: Exploring a Long Short-Term Memory based Encoder-Decoder framework for multi-step-ahead flood forecasting
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124631
– volume: 18
  start-page: 1019
  year: 2010
  ident: 10.1016/j.tust.2025.106398_b0245
  article-title: Dynamic characteristic analysis of TBM tunnelling in mixed-face conditions
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2010.03.005
– volume: 91
  year: 2019
  ident: 10.1016/j.tust.2025.106398_b0255
  article-title: Torque fluctuation fluctuation analysis and penetration prediction of EPB TBM in rock-soil interface mixed ground
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2019.103002
– volume: 598
  year: 2021
  ident: 10.1016/j.tust.2025.106398_b0225
  article-title: Rainfall-runoff modeling using LSTM-based multi-state-vector sequence-to-sequence model
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126378
– volume: 601
  year: 2021
  ident: 10.1016/j.tust.2025.106398_b0005
  article-title: A novel attention-based LSTM cell post-processor coupled with bayesian optimization for streamflow prediction
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126526
– volume: 7
  start-page: 238
  year: 2021
  ident: 10.1016/j.tust.2025.106398_b0045
  article-title: Prediction of disc cutter life during shield tunneling with AI via the incorporation of a genetic algorithm into a GMDH-type neural network
  publication-title: Engineering
  doi: 10.1016/j.eng.2020.02.016
– volume: 74
  start-page: 217
  year: 2018
  ident: 10.1016/j.tust.2025.106398_b0260
  article-title: Estimation of the cutterhead torque for earth pressure balance TBM under mixed-face conditions
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2018.01.025
– ident: 10.1016/j.tust.2025.106398_b0130
  doi: 10.1007/978-3-7091-8452-3_3
– volume: 13
  start-page: 335
  year: 2023
  ident: 10.1016/j.tust.2025.106398_b0115
  article-title: Attention-based LSTM predictive model for the attitude and position of shield machine in tunneling
  publication-title: Underground Space
  doi: 10.1016/j.undsp.2023.05.006
– volume: 14
  year: 2022
  ident: 10.1016/j.tust.2025.106398_b0100
  article-title: A real-time prediction method for tunnel boring machine cutter-head torque using bidirectional long short-term memory networks optimized by multi-algorithm
  publication-title: J. Rock Mech. Geotech. Eng.
  doi: 10.1016/j.jrmge.2021.11.008
– volume: 165
  year: 2022
  ident: 10.1016/j.tust.2025.106398_b0110
  article-title: An accurate and adaptative cutterhead torque prediction method for shield tunneling machines via adaptative residual long-short term memory network
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2021.108312
– volume: 62
  start-page: 531
  year: 2014
  ident: 10.1016/j.tust.2025.106398_b0040
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2288675
– volume: 106
  year: 2020
  ident: 10.1016/j.tust.2025.106398_b0240
  article-title: A critical evaluation of machine learning and deep learning in shield-ground interaction prediction
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2020.103593
– volume: 108
  year: 2021
  ident: 10.1016/j.tust.2025.106398_b0095
  article-title: BIM, machine learning and computer vision techniques in underground construction: Current status and future perspectives
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2020.103677
– volume: 325
  start-page: 54
  year: 2014
  ident: 10.1016/j.tust.2025.106398_b0180
  article-title: Improved empirical mode decomposition based denoising method for lidar signals
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2014.03.083
– volume: 213
  year: 2020
  ident: 10.1016/j.tust.2025.106398_b0235
  article-title: Short-term wind power forecasting approach based on Seq2Seq model using NWP data
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118371
– volume: 118
  year: 2020
  ident: 10.1016/j.tust.2025.106398_b0170
  article-title: A novel adaptive single-phase reclosure scheme based on improved variational mode decomposition and energy entropy
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2019.105771
– volume: 140
  year: 2020
  ident: 10.1016/j.tust.2025.106398_b0105
  article-title: Coupled modeling and dynamic characteristics of TBM cutterhead system under uncertain factors
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2020.106664
– year: 2022
  ident: 10.1016/j.tust.2025.106398_b0205
  article-title: Identification of geological characteristics from construction parameters during shield tunnelling
  publication-title: Acta Geotech.
– volume: 177
  year: 2021
  ident: 10.1016/j.tust.2025.106398_b0220
  article-title: An adaptive seismic signal denoising method based on variational mode decomposition
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109277
– volume: 71
  start-page: 340
  year: 2018
  ident: 10.1016/j.tust.2025.106398_b0015
  article-title: Empirical modeling for predicting excavation performance of EPB TBM based on soil properties
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2017.09.016
– volume: 301
  year: 2021
  ident: 10.1016/j.tust.2025.106398_b0020
  article-title: Double-layer staged training echo-state networks for wind speed prediction using variational mode decomposition
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117461
– volume: 57
  start-page: 4
  year: 2016
  ident: 10.1016/j.tust.2025.106398_b0075
  article-title: TBM tunnelling under adverse geological conditions: An overview
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2016.04.002
– start-page: 793
  year: 1993
  ident: 10.1016/j.tust.2025.106398_b0155
  article-title: New model for performance production of hard rock TBMs
  publication-title: Proceedings - Rapid Excavation and Tunneling Conference
– volume: 8
  start-page: 22
  year: 2020
  ident: 10.1016/j.tust.2025.106398_b0200
  article-title: A novel swarm intelligence optimization approach: sparrow search algorithm
  publication-title: Syst. Sci. Control Eng.
  doi: 10.1080/21642583.2019.1708830
– volume: 184
  year: 2021
  ident: 10.1016/j.tust.2025.106398_b0050
  article-title: A transient electromagnetic signal denoising method based on an improved variational mode decomposition algorithm
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109815
– volume: 31
  start-page: 1235
  year: 2019
  ident: 10.1016/j.tust.2025.106398_b0230
  article-title: A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01199
– volume: 149
  year: 2020
  ident: 10.1016/j.tust.2025.106398_b0080
  article-title: Incipient fault diagnosis of rolling bearings based on adaptive variational mode decomposition and Teager energy operator
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.106941
– volume: 93
  start-page: 192
  year: 2018
  ident: 10.1016/j.tust.2025.106398_b0190
  article-title: Pose and trajectory control of shield tunneling machine in complicated stratum
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2018.05.020
– volume: 114
  start-page: 413
  year: 2021
  ident: 10.1016/j.tust.2025.106398_b0035
  article-title: Incipient fault diagnosis of bearings based on parameter-optimized VMD and envelope spectrum weighted kurtosis index with a new sensitivity assessment threshold
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2020.12.041
SSID ssj0005229
Score 2.4564066
Snippet •A multi-step prediction model for cutterhead torque is proposed.•Adaptive denoising and encoder-decoder are used to improve the model performance.•The model...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106398
SubjectTerms Cutterhead torque
Encoder-decoder model
Long short-term memory
Multi-step prediction
Shield machine
Title Multi-step prediction model enhanced by adaptive denoising and encoder-decoder for shield machine cutterhead torque in complex conditions
URI https://dx.doi.org/10.1016/j.tust.2025.106398
Volume 158
WOSCitedRecordID wos001401883500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0886-7798
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005229
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMcEE9RXtoDt8jIr-3axwoVlQpVSA0onKx9WXGUusGxq_ATOPOHmX3ZpkUVIHFxopV3N8r3eXd2_M0MQq9ZTiMliQi4yMsgLSkLcpImgWKhOMgzzqiJSvv8gZ6eZotF_nEy-eFjYS7XtK6z3S7f_FeooQ3A1qGzfwF3Pyg0wHcAHa4AO1z_CHgTUhsAeBudAEBWtha4qXgzU_XSvvEHo5NJtjG6IVh5LqqtD1bUiS2lagKpzKeRIW6XWuc2OzfCSzUTprg1rOISLNdG5391Yva12mkZu6wGL6Cze-ed0dP4SXTkWqMDSrTXHk7tatZec_EvOrsenvvN1bj97dL0pRtIfdy5xhO48Wv1a_ezZbfq6rFrIyYjRYzxt_mYm0HgZJfFAzgT2NrV_Rpu879f2w-sa2L1ptXxK3oKaAKbLBt2v16TeKYH1uPGxGTpobfQXkxJnk3R3uH7o8XJSDlkit_1P8TFYlnZ4NWZfm_vjGyY-X10zx0-8KElzQM0UfVDdHeUkvIR-j7QBw_0wYY-2NMH82_Y0wf39MGALL5CHwz0wZY-2NEHD_TBlj64qrGjDx7o8xh9enc0f3scuHIdgUjCsA1gpyQ84TJlZUxFkkdxlEbwqIs45EnIQx7B4ZlkQpGklGUpGSNc0DKNQkUlZSR5gqb1Ra2eIgz9VMREUiYlS1MRMhVxFSepLoIJBlS2jyL_pxbC5bLXJVXWhRctrgoNRKGBKCwQ-2jW99nYTC433k08VoWzRa2NWQC1buj37B_7PUd3hifgBZq2Tadeotvisq22zSvHwJ9XqLij
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-step+prediction+model+enhanced+by+adaptive+denoising+and+encoder-decoder+for+shield+machine+cutterhead+torque+in+complex+conditions&rft.jtitle=Tunnelling+and+underground+space+technology&rft.au=Xu%2C+Deming&rft.au=Wang%2C+Yuan&rft.au=Huang%2C+Jingqi&rft.au=Xu%2C+Shujun&rft.date=2025-04-01&rft.pub=Elsevier+Ltd&rft.issn=0886-7798&rft.volume=158&rft_id=info:doi/10.1016%2Fj.tust.2025.106398&rft.externalDocID=S0886779825000367
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-7798&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-7798&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-7798&client=summon