Orbits of the backward shifts with limit points

We show that the bilateral backward shift on ℓp(Z,ω) that has a projective orbit with a non-zero limit point is supercyclic. This phenomenon holds also for Γ-supercyclicity, which extends a result obtained for the first time by Chan and Seceleanu. Moreover, we show that if K is a compact subset of ℓ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications Jg. 537; H. 2; S. 128293
Hauptverfasser: Abakumov, Evgeny, Abbar, Arafat
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 15.09.2024
Schlagworte:
ISSN:0022-247X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the bilateral backward shift on ℓp(Z,ω) that has a projective orbit with a non-zero limit point is supercyclic. This phenomenon holds also for Γ-supercyclicity, which extends a result obtained for the first time by Chan and Seceleanu. Moreover, we show that if K is a compact subset of ℓp(N,ω) such that its orbit under the unilateral backward shift B on ℓp(N,ω) has a non-zero weak limit point, then B is hypercyclic. Similar results for translation semigroups on weighted Lebesgue spaces are obtained.
ISSN:0022-247X
DOI:10.1016/j.jmaa.2024.128293