Orbits of the backward shifts with limit points
We show that the bilateral backward shift on ℓp(Z,ω) that has a projective orbit with a non-zero limit point is supercyclic. This phenomenon holds also for Γ-supercyclicity, which extends a result obtained for the first time by Chan and Seceleanu. Moreover, we show that if K is a compact subset of ℓ...
Uloženo v:
| Vydáno v: | Journal of mathematical analysis and applications Ročník 537; číslo 2; s. 128293 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
15.09.2024
|
| Témata: | |
| ISSN: | 0022-247X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We show that the bilateral backward shift on ℓp(Z,ω) that has a projective orbit with a non-zero limit point is supercyclic. This phenomenon holds also for Γ-supercyclicity, which extends a result obtained for the first time by Chan and Seceleanu. Moreover, we show that if K is a compact subset of ℓp(N,ω) such that its orbit under the unilateral backward shift B on ℓp(N,ω) has a non-zero weak limit point, then B is hypercyclic. Similar results for translation semigroups on weighted Lebesgue spaces are obtained. |
|---|---|
| ISSN: | 0022-247X |
| DOI: | 10.1016/j.jmaa.2024.128293 |