Orbits of the backward shifts with limit points

We show that the bilateral backward shift on ℓp(Z,ω) that has a projective orbit with a non-zero limit point is supercyclic. This phenomenon holds also for Γ-supercyclicity, which extends a result obtained for the first time by Chan and Seceleanu. Moreover, we show that if K is a compact subset of ℓ...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of mathematical analysis and applications Ročník 537; číslo 2; s. 128293
Hlavní autoři: Abakumov, Evgeny, Abbar, Arafat
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 15.09.2024
Témata:
ISSN:0022-247X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We show that the bilateral backward shift on ℓp(Z,ω) that has a projective orbit with a non-zero limit point is supercyclic. This phenomenon holds also for Γ-supercyclicity, which extends a result obtained for the first time by Chan and Seceleanu. Moreover, we show that if K is a compact subset of ℓp(N,ω) such that its orbit under the unilateral backward shift B on ℓp(N,ω) has a non-zero weak limit point, then B is hypercyclic. Similar results for translation semigroups on weighted Lebesgue spaces are obtained.
ISSN:0022-247X
DOI:10.1016/j.jmaa.2024.128293