Lie product type formulas for continuous multilinear operators

In this paper we prove various Lie product type formulas for continuous multilinear operators. A sample result: Let k≥2 be a natural number, X1,..., Xk, Y be Banach algebras with unit and T:X1×⋅⋅⋅×Xk→Y a continuous k-linear operator such that T(1,...,1)=1. Let also (an)n∈N be a sequence of natural n...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of mathematical analysis and applications Ročník 542; číslo 1; s. 128760
Hlavní autor: Popa, Dumitru
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.02.2025
Témata:
ISSN:0022-247X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper we prove various Lie product type formulas for continuous multilinear operators. A sample result: Let k≥2 be a natural number, X1,..., Xk, Y be Banach algebras with unit and T:X1×⋅⋅⋅×Xk→Y a continuous k-linear operator such that T(1,...,1)=1. Let also (an)n∈N be a sequence of natural numbers such that limn→∞⁡an=∞. Then for all x1∈X1,..., xk∈Xk we havelimn→∞⁡[T(ex1an,...,exkan)]an=eT(x1,1,...,1)+T(1,x2,1,...,1)+⋅⋅⋅+T(1,...,1,xk).
ISSN:0022-247X
DOI:10.1016/j.jmaa.2024.128760