Lie product type formulas for continuous multilinear operators
In this paper we prove various Lie product type formulas for continuous multilinear operators. A sample result: Let k≥2 be a natural number, X1,..., Xk, Y be Banach algebras with unit and T:X1×⋅⋅⋅×Xk→Y a continuous k-linear operator such that T(1,...,1)=1. Let also (an)n∈N be a sequence of natural n...
Uloženo v:
| Vydáno v: | Journal of mathematical analysis and applications Ročník 542; číslo 1; s. 128760 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.02.2025
|
| Témata: | |
| ISSN: | 0022-247X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper we prove various Lie product type formulas for continuous multilinear operators. A sample result: Let k≥2 be a natural number, X1,..., Xk, Y be Banach algebras with unit and T:X1×⋅⋅⋅×Xk→Y a continuous k-linear operator such that T(1,...,1)=1. Let also (an)n∈N be a sequence of natural numbers such that limn→∞an=∞. Then for all x1∈X1,..., xk∈Xk we havelimn→∞[T(ex1an,...,exkan)]an=eT(x1,1,...,1)+T(1,x2,1,...,1)+⋅⋅⋅+T(1,...,1,xk). |
|---|---|
| ISSN: | 0022-247X |
| DOI: | 10.1016/j.jmaa.2024.128760 |