Clustering right-skewed data stream via Birnbaum–Saunders mixture models: A flexible approach based on fuzzy clustering algorithm

Despite the widespread use of Gaussian mixture model for clustering datasets, practical applications show that the skewed and leptokurtic mixture models can be considered as promising alternatives. This paper proposes a finite mixture of Birnbaum–Saunders (FM-BS) distributions for analyzing and clus...

Full description

Saved in:
Bibliographic Details
Published in:Applied soft computing Vol. 82; p. 105539
Main Authors: Hashemi, Farzane, Naderi, Mehrdad, Mashinchi, Mashallah
Format: Journal Article
Language:English
Published: Elsevier B.V 01.09.2019
Subjects:
ISSN:1568-4946, 1872-9681
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Despite the widespread use of Gaussian mixture model for clustering datasets, practical applications show that the skewed and leptokurtic mixture models can be considered as promising alternatives. This paper proposes a finite mixture of Birnbaum–Saunders (FM-BS) distributions for analyzing and clustering right-skewed, leptokurtic, and multimodal lifetime datasets. The maximum likelihood (ML) estimates of the proposed model are obtained by developing a computationally analytical expectation–maximization (EM) type algorithm, as well as a fuzzy classification maximum likelihood (FCML) type algorithm, that combines the advantages of fuzzy clustering and robust statistical estimators. Simulation studies demonstrate the accuracy and computational efficiency of the FCML algorithm to estimate parameters of the FM-BS distributions and to cluster samples drawn from the FM-BS distributions. Finally, some real datasets have been analyzed to illustrate how well the proposed FM-BS model estimates the membership values. •A finite mixture model for clustering right-skewed, and multimodal data is proposed.•The EM and FCML type algorithms are implemented for computing ML estimates.•Asymptotic standard errors of parameter estimate are obtained through.
AbstractList Despite the widespread use of Gaussian mixture model for clustering datasets, practical applications show that the skewed and leptokurtic mixture models can be considered as promising alternatives. This paper proposes a finite mixture of Birnbaum–Saunders (FM-BS) distributions for analyzing and clustering right-skewed, leptokurtic, and multimodal lifetime datasets. The maximum likelihood (ML) estimates of the proposed model are obtained by developing a computationally analytical expectation–maximization (EM) type algorithm, as well as a fuzzy classification maximum likelihood (FCML) type algorithm, that combines the advantages of fuzzy clustering and robust statistical estimators. Simulation studies demonstrate the accuracy and computational efficiency of the FCML algorithm to estimate parameters of the FM-BS distributions and to cluster samples drawn from the FM-BS distributions. Finally, some real datasets have been analyzed to illustrate how well the proposed FM-BS model estimates the membership values. •A finite mixture model for clustering right-skewed, and multimodal data is proposed.•The EM and FCML type algorithms are implemented for computing ML estimates.•Asymptotic standard errors of parameter estimate are obtained through.
ArticleNumber 105539
Author Mashinchi, Mashallah
Naderi, Mehrdad
Hashemi, Farzane
Author_xml – sequence: 1
  givenname: Farzane
  surname: Hashemi
  fullname: Hashemi, Farzane
  email: farzane.hashemi1367@yahoo.com
  organization: Department of Statistics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran
– sequence: 2
  givenname: Mehrdad
  surname: Naderi
  fullname: Naderi, Mehrdad
  email: m.naderi@up.ac.za
  organization: Department of Statistics, Faculty of Natural & Agricultural Sciences, University of Pretoria, Pretoria, South Africa
– sequence: 3
  givenname: Mashallah
  surname: Mashinchi
  fullname: Mashinchi, Mashallah
  email: mashinchi@uk.ac.ir
  organization: Department of Statistics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran
BookMark eNp9kMFqGzEQhkVJIbGbF8hJL7CutFrvaksvqWnSQiCHJGcxkmZtubsrI2kdO6dAHyFv2CfpGhcKOfg0PwPfP8w3IWe975GQK85mnPHy83oG0ZtZzng9LuZzUX8gF1xWeVaXkp-NeV7KrKiL8pxMYlyzEapzeUF-L9ohJgyuX9LglquUxV_4jJZaSEBjCggd3Tqg31zoNQzdn9e3Bxh6iyHSzu3SEJB23mIbv9Br2rS4c7pFCptN8GBWVEMc23xPm-HlZU_N_3PQLn1wadV9Ih8baCNe_ptT8nTz_XHxI7u7v_25uL7LjGAsZTKXDeOVhrzJeWWFKYQsmag1GMmh0YUujCxEVY5vmhyslroqGDNC8FpItGJK8mOvCT7GgI3aBNdB2CvO1EGjWquDRnXQqI4aR0i-g4xLkJzvUwDXnka_HtFRDm4dBhWNw96gdQFNUta7U_hfpfKUAg
CitedBy_id crossref_primary_10_1016_j_asoc_2020_106797
crossref_primary_10_1007_s42952_020_00063_8
crossref_primary_10_1016_j_amc_2020_125712
crossref_primary_10_1007_s40314_022_01875_6
crossref_primary_10_1007_s40995_020_01020_0
crossref_primary_10_1007_s40304_021_00260_9
crossref_primary_10_1002_sam_70027
crossref_primary_10_1016_j_amc_2020_125109
crossref_primary_10_1016_j_cam_2023_115433
Cites_doi 10.1016/j.csda.2011.06.026
10.18869/acadpub.jirss.16.1.1003
10.1111/1467-9965.00068
10.1080/02331880701829948
10.1080/02664763.2018.1428288
10.1002/asmb.2403
10.1016/j.patcog.2017.05.017
10.1007/s11222-009-9128-9
10.2478/bile-2013-0006
10.1016/j.fss.2015.07.001
10.1016/j.apm.2014.05.039
10.1002/asmb.887
10.1007/BF01908075
10.1007/s00180-012-0327-z
10.1007/s00500-007-0266-8
10.1007/s00477-008-0215-9
10.1111/j.2517-6161.1977.tb01600.x
10.1016/j.fss.2015.04.012
10.1016/j.enconman.2017.03.083
10.1016/0165-0114(93)90030-L
10.2307/3212003
10.1137/1026034
10.1111/j.2517-6161.1989.tb01754.x
10.1023/A:1008981510081
10.1007/s10182-016-0266-z
10.1016/j.insmatheco.2016.06.018
10.1016/j.jmva.2018.11.015
10.1016/j.csda.2014.09.006
10.1111/j.2517-6161.1982.tb01203.x
10.1016/S0167-9473(02)00254-2
10.1016/j.patcog.2011.08.028
10.1016/S0019-9958(65)90241-X
10.1080/02664763.2016.1190322
10.1007/s11222-013-9386-4
10.1016/j.patrec.2008.06.013
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2019.105539
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2019_105539
S1568494619303151
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-828f017ba2f217d3c4386039bac81afb4b4c84376494c2adb8b7400c331938ed3
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000484606800052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 07:04:42 EST 2025
Tue Nov 18 21:40:51 EST 2025
Fri Feb 23 02:45:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fuzzy clustering
Classification maximum likelihood
Finite mixture of Birnbaum–Saunders distributions
EM-type algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-828f017ba2f217d3c4386039bac81afb4b4c84376494c2adb8b7400c331938ed3
ParticipantIDs crossref_primary_10_1016_j_asoc_2019_105539
crossref_citationtrail_10_1016_j_asoc_2019_105539
elsevier_sciencedirect_doi_10_1016_j_asoc_2019_105539
PublicationCentury 2000
PublicationDate September 2019
2019-09-00
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: September 2019
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ali (b18) 2015; 39
Wang, Lin (b35) 2012; 28
Redner, Walker (b1) 1984; 26
Lin (b3) 2009; 20
Naderi, Arabpour, Jamalizadeh (b8) 2017; 16
Dempster, Laird, Rubin (b9) 1977; 39
Naderi, Hung, Lin, Jamalizadeh (b41) 2019; 171
Naderi, Mozafari, Okhli (b20) 2019
McLachlan, Basford (b32) 1988
Hung, Chien (b40) 2016; 44
Gomes, Ferreira, Leiva (b25) 2012; 49
Leiva, Sanhueza, Angulo (b23) 2008; 23
Ferreira, Lachos, Bolfarine (b6) 2016; 100
Benites, Maehara, Vilca, Marmolejo-Ramos (b19) 2017
Paula, Leiva, Barros, Liu (b26) 2011; 28
Yang, Nataliani (b42) 2017; 71
Mohammadi, Alavi, McGowan (b24) 2017; 143
Yang (b10) 1993; 57
Peel, McLachlan (b2) 2000; 10
Bigand, Colot (b14) 2016; 286
Balakrishnan, Kundu (b27) 2018
Zadeh (b15) 1965; 8
Lin, Ho, Lee (b4) 2013; 24
Cabral, Lachos, Prates (b5) 2012; 56
Meilijson (b29) 1989; 51
Bezdek (b31) 1981
Jamalizadeh, Hashemi, Naderi (b28) 2018; 35
Hung, Chang, Chuang (b17) 2007; 12
Hubert, Arabie (b37) 1985; 2
Jorgensen (b36) 2012
Punzo, Mazza, Maruotti (b16) 2018; 45
Balakrishnan, Leiva, Sanhueza, Cabrera (b22) 2009; 43
Quost, Denœux (b13) 2016; 286
Pitselis (b38) 2016; 70
Chatzis, Varvarigou (b11) 2008; 29
Ju, Liu (b12) 2012; 45
O’Hagan, Murphy, Gormley, McNicholas, Karlis (b7) 2016; 93
Hartigan, Wong (b33) 1979; 28
Artzner, Delbaen, Eber, Heath (b39) 1999; 9
Birnbaum, Saunders (b21) 1969; 6
Ng, Kundu, Balakrishnan (b34) 2003; 43
Louis (b30) 1982; 44
Paula (10.1016/j.asoc.2019.105539_b26) 2011; 28
Redner (10.1016/j.asoc.2019.105539_b1) 1984; 26
Ju (10.1016/j.asoc.2019.105539_b12) 2012; 45
Cabral (10.1016/j.asoc.2019.105539_b5) 2012; 56
Zadeh (10.1016/j.asoc.2019.105539_b15) 1965; 8
Louis (10.1016/j.asoc.2019.105539_b30) 1982; 44
Dempster (10.1016/j.asoc.2019.105539_b9) 1977; 39
Meilijson (10.1016/j.asoc.2019.105539_b29) 1989; 51
Ali (10.1016/j.asoc.2019.105539_b18) 2015; 39
Hung (10.1016/j.asoc.2019.105539_b40) 2016; 44
Lin (10.1016/j.asoc.2019.105539_b4) 2013; 24
Yang (10.1016/j.asoc.2019.105539_b42) 2017; 71
Hartigan (10.1016/j.asoc.2019.105539_b33) 1979; 28
Bezdek (10.1016/j.asoc.2019.105539_b31) 1981
Ng (10.1016/j.asoc.2019.105539_b34) 2003; 43
Chatzis (10.1016/j.asoc.2019.105539_b11) 2008; 29
Quost (10.1016/j.asoc.2019.105539_b13) 2016; 286
Birnbaum (10.1016/j.asoc.2019.105539_b21) 1969; 6
Balakrishnan (10.1016/j.asoc.2019.105539_b22) 2009; 43
Benites (10.1016/j.asoc.2019.105539_b19) 2017
Pitselis (10.1016/j.asoc.2019.105539_b38) 2016; 70
O’Hagan (10.1016/j.asoc.2019.105539_b7) 2016; 93
Naderi (10.1016/j.asoc.2019.105539_b41) 2019; 171
Punzo (10.1016/j.asoc.2019.105539_b16) 2018; 45
Naderi (10.1016/j.asoc.2019.105539_b8) 2017; 16
Balakrishnan (10.1016/j.asoc.2019.105539_b27) 2018
Mohammadi (10.1016/j.asoc.2019.105539_b24) 2017; 143
Naderi (10.1016/j.asoc.2019.105539_b20) 2019
Jorgensen (10.1016/j.asoc.2019.105539_b36) 2012
McLachlan (10.1016/j.asoc.2019.105539_b32) 1988
Jamalizadeh (10.1016/j.asoc.2019.105539_b28) 2018; 35
Bigand (10.1016/j.asoc.2019.105539_b14) 2016; 286
Lin (10.1016/j.asoc.2019.105539_b3) 2009; 20
Yang (10.1016/j.asoc.2019.105539_b10) 1993; 57
Gomes (10.1016/j.asoc.2019.105539_b25) 2012; 49
Wang (10.1016/j.asoc.2019.105539_b35) 2012; 28
Hung (10.1016/j.asoc.2019.105539_b17) 2007; 12
Artzner (10.1016/j.asoc.2019.105539_b39) 1999; 9
Leiva (10.1016/j.asoc.2019.105539_b23) 2008; 23
Ferreira (10.1016/j.asoc.2019.105539_b6) 2016; 100
Peel (10.1016/j.asoc.2019.105539_b2) 2000; 10
Hubert (10.1016/j.asoc.2019.105539_b37) 1985; 2
References_xml – volume: 12
  start-page: 1013
  year: 2007
  end-page: 1018
  ident: b17
  article-title: Fuzzy classification maximum likelihood algorithms for mixed-Weibull distributions
  publication-title: Soft Comput.
– volume: 93
  start-page: 18
  year: 2016
  end-page: 30
  ident: b7
  article-title: Clustering with the multivariate normal inverse Gaussian distribution
  publication-title: Comput. Statist. Data Anal.
– volume: 6
  start-page: 319
  year: 1969
  end-page: 327
  ident: b21
  article-title: A new family of life distributions
  publication-title: J. Appl. Probab.
– volume: 23
  start-page: 299
  year: 2008
  end-page: 307
  ident: b23
  article-title: A length-biased version of the Birnbaum-Saunders distribution with application in water quality
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 49
  start-page: 81
  year: 2012
  end-page: 94
  ident: b25
  article-title: The extreme value Birnbaum-Saunders model, its moments and an application in biometry
  publication-title: Biom. Lett.
– volume: 29
  start-page: 1901
  year: 2008
  end-page: 1905
  ident: b11
  article-title: Robust fuzzy clustering using mixtures of student’s-
  publication-title: Pattern Recognit. Lett.
– volume: 71
  start-page: 45
  year: 2017
  end-page: 59
  ident: b42
  article-title: Robust-learning fuzzy
  publication-title: Pattern Recognit.
– volume: 10
  start-page: 339
  year: 2000
  end-page: 348
  ident: b2
  article-title: Robust mixture modelling using the
  publication-title: Stat. Comput.
– year: 2017
  ident: b19
  article-title: Finite mixture of Birnbaum-Saunders distributions using the
– volume: 56
  start-page: 126
  year: 2012
  end-page: 142
  ident: b5
  article-title: Multivariate mixture modeling using skew-normal independent distributions
  publication-title: Comput. Statist. Data Anal.
– volume: 143
  start-page: 109
  year: 2017
  end-page: 122
  ident: b24
  article-title: Use of Birnbaum-Saunders distribution for estimating wind speed and wind power probability distributions: A review
  publication-title: Energy Convers. Manage.
– volume: 286
  start-page: 134
  year: 2016
  end-page: 156
  ident: b13
  article-title: Clustering and classification of fuzzy data using the fuzzy EM algorithm
  publication-title: Fuzzy Sets and Systems
– volume: 171
  start-page: 126
  year: 2019
  end-page: 138
  ident: b41
  article-title: A novel mixture model using the multivariate normal mean–variance mixture of Birnbaum-Saunders distributions and its application to extrasolar planets
  publication-title: J. Multivariate Anal.
– volume: 43
  start-page: 283
  year: 2003
  end-page: 298
  ident: b34
  article-title: Modified moment estimation for the two-parameter Birnbaum-Saunders distribution
  publication-title: Comput. Statist. Data Anal.
– volume: 45
  start-page: 1146
  year: 2012
  end-page: 1158
  ident: b12
  article-title: Fuzzy Gaussian mixture models
  publication-title: Pattern Recognit.
– year: 2019
  ident: b20
  article-title: Finite mixture modeling via skew-Laplace Birnbaum-Saunders distribution
  publication-title: J. Stat. Theory Appl.
– year: 2012
  ident: b36
  article-title: Statistical Properties of the Generalized Inverse Gaussian Distribution. Vol. 9
– volume: 45
  start-page: 2563
  year: 2018
  end-page: 2584
  ident: b16
  article-title: Fitting insurance and economic data with outliers: a flexible approach based on finite mixtures of contaminated Gamma distributions
  publication-title: J. Appl. Stat.
– volume: 57
  start-page: 365
  year: 1993
  end-page: 375
  ident: b10
  article-title: On a class of fuzzy classification maximum likelihood procedures
  publication-title: Fuzzy Sets and Systems
– volume: 44
  start-page: 226
  year: 1982
  end-page: 233
  ident: b30
  article-title: Finding the observed information matrix when using the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– volume: 70
  start-page: 373
  year: 2016
  end-page: 386
  ident: b38
  article-title: Credible risk measures with applications in actuarial sciences and finance
  publication-title: Insurance Math. Econom.
– volume: 28
  start-page: 100
  year: 1979
  end-page: 108
  ident: b33
  article-title: A
  publication-title: J. R. Stat. Soc. Ser. C
– volume: 286
  start-page: 66
  year: 2016
  end-page: 85
  ident: b14
  article-title: Membership function construction for interval-valued fuzzy sets with application to Gaussian noise reduction
  publication-title: Fuzzy Sets and Systems
– year: 2018
  ident: b27
  article-title: Birnbaum-Saunders distribution: A review of models, analysis, and applications
  publication-title: Appl. Stoch. Models Bus. Ind.
– volume: 26
  start-page: 195
  year: 1984
  end-page: 239
  ident: b1
  article-title: Mixture densities, maximum likelihood and the EM algorithm
  publication-title: SIAM Rev.
– volume: 35
  start-page: 82
  year: 2018
  end-page: 89
  ident: b28
  article-title: Discussion of “Birnbaum-Saunders distribution: A review of models, analysis, and applications”
  publication-title: Appl. Stoch. Models Bus. Ind.
– volume: 51
  start-page: 127
  year: 1989
  end-page: 138
  ident: b29
  article-title: A fast improvement to the EM algorithm on its own terms
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– volume: 28
  start-page: 751
  year: 2012
  end-page: 769
  ident: b35
  article-title: An efficient ECM algorithm for maximum likelihood estimation in mixtures of
  publication-title: Comput. Statist.
– volume: 2
  start-page: 193
  year: 1985
  end-page: 218
  ident: b37
  article-title: Comparing partitions
  publication-title: J. Classification
– volume: 100
  start-page: 421
  year: 2016
  end-page: 441
  ident: b6
  article-title: Likelihood-based inference for multivariate skew scale mixtures of normal distributions
  publication-title: AStA Adv. Stat. Anal.
– volume: 20
  start-page: 343
  year: 2009
  end-page: 356
  ident: b3
  article-title: Robust mixture modeling using multivariate skew
  publication-title: Stat. Comput.
– volume: 28
  start-page: 16
  year: 2011
  end-page: 34
  ident: b26
  article-title: Robust statistical modeling using the Birnbaum-Saunders-
  publication-title: Appl. Stoch. Models Bus. Ind.
– volume: 44
  start-page: 978
  year: 2016
  end-page: 999
  ident: b40
  article-title: Learning-based EM algorithm for normal-inverse Gaussian mixture model with application to extrasolar planets
  publication-title: J. Appl. Stat.
– volume: 24
  start-page: 531
  year: 2013
  end-page: 546
  ident: b4
  article-title: Flexible mixture modelling using the multivariate skew-
  publication-title: Stat. Comput.
– volume: 39
  start-page: 515
  year: 2015
  end-page: 530
  ident: b18
  article-title: Mixture of the inverse Rayleigh distribution: Properties and estimation in a Bayesian framework
  publication-title: Appl. Math. Model.
– year: 1988
  ident: b32
  article-title: Mixture Models: Inference and Applications To Clustering. Vol. 84
– year: 1981
  ident: b31
  article-title: Pattern Recognition with Fuzzy Objective Function Algorithms
– volume: 8
  start-page: 338
  year: 1965
  end-page: 353
  ident: b15
  article-title: Fuzzy sets
  publication-title: Inf. Control
– volume: 43
  start-page: 91
  year: 2009
  end-page: 104
  ident: b22
  article-title: Mixture inverse Gaussian distributions and its transformations, moments and applications
  publication-title: Statistics
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: b9
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– volume: 9
  start-page: 203
  year: 1999
  end-page: 228
  ident: b39
  article-title: Coherent measures of risk
  publication-title: Math. Finance
– volume: 16
  start-page: 33
  year: 2017
  end-page: 52
  ident: b8
  article-title: On the finite mixture modelling via normal mean–variance Birnbaum-Saunders distribution
  publication-title: J. Iran. Stat. Soc. (JIRSS)
– volume: 56
  start-page: 126
  issue: 1
  year: 2012
  ident: 10.1016/j.asoc.2019.105539_b5
  article-title: Multivariate mixture modeling using skew-normal independent distributions
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2011.06.026
– volume: 16
  start-page: 33
  issue: 1
  year: 2017
  ident: 10.1016/j.asoc.2019.105539_b8
  article-title: On the finite mixture modelling via normal mean–variance Birnbaum-Saunders distribution
  publication-title: J. Iran. Stat. Soc. (JIRSS)
  doi: 10.18869/acadpub.jirss.16.1.1003
– volume: 9
  start-page: 203
  issue: 3
  year: 1999
  ident: 10.1016/j.asoc.2019.105539_b39
  article-title: Coherent measures of risk
  publication-title: Math. Finance
  doi: 10.1111/1467-9965.00068
– volume: 43
  start-page: 91
  issue: 1
  year: 2009
  ident: 10.1016/j.asoc.2019.105539_b22
  article-title: Mixture inverse Gaussian distributions and its transformations, moments and applications
  publication-title: Statistics
  doi: 10.1080/02331880701829948
– volume: 45
  start-page: 2563
  issue: 14
  year: 2018
  ident: 10.1016/j.asoc.2019.105539_b16
  article-title: Fitting insurance and economic data with outliers: a flexible approach based on finite mixtures of contaminated Gamma distributions
  publication-title: J. Appl. Stat.
  doi: 10.1080/02664763.2018.1428288
– volume: 35
  start-page: 82
  issue: 1
  year: 2018
  ident: 10.1016/j.asoc.2019.105539_b28
  article-title: Discussion of “Birnbaum-Saunders distribution: A review of models, analysis, and applications”
  publication-title: Appl. Stoch. Models Bus. Ind.
  doi: 10.1002/asmb.2403
– volume: 71
  start-page: 45
  year: 2017
  ident: 10.1016/j.asoc.2019.105539_b42
  article-title: Robust-learning fuzzy c-means clustering algorithm with unknown number of clusters
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.05.017
– volume: 20
  start-page: 343
  issue: 3
  year: 2009
  ident: 10.1016/j.asoc.2019.105539_b3
  article-title: Robust mixture modeling using multivariate skew t distributions
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-009-9128-9
– volume: 49
  start-page: 81
  issue: 2
  year: 2012
  ident: 10.1016/j.asoc.2019.105539_b25
  article-title: The extreme value Birnbaum-Saunders model, its moments and an application in biometry
  publication-title: Biom. Lett.
  doi: 10.2478/bile-2013-0006
– volume: 286
  start-page: 66
  year: 2016
  ident: 10.1016/j.asoc.2019.105539_b14
  article-title: Membership function construction for interval-valued fuzzy sets with application to Gaussian noise reduction
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2015.07.001
– volume: 39
  start-page: 515
  issue: 2
  year: 2015
  ident: 10.1016/j.asoc.2019.105539_b18
  article-title: Mixture of the inverse Rayleigh distribution: Properties and estimation in a Bayesian framework
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2014.05.039
– volume: 28
  start-page: 16
  issue: 1
  year: 2011
  ident: 10.1016/j.asoc.2019.105539_b26
  article-title: Robust statistical modeling using the Birnbaum-Saunders-t distribution applied to insurance
  publication-title: Appl. Stoch. Models Bus. Ind.
  doi: 10.1002/asmb.887
– volume: 2
  start-page: 193
  issue: 1
  year: 1985
  ident: 10.1016/j.asoc.2019.105539_b37
  article-title: Comparing partitions
  publication-title: J. Classification
  doi: 10.1007/BF01908075
– volume: 28
  start-page: 751
  issue: 2
  year: 2012
  ident: 10.1016/j.asoc.2019.105539_b35
  article-title: An efficient ECM algorithm for maximum likelihood estimation in mixtures of t-factor analyzers
  publication-title: Comput. Statist.
  doi: 10.1007/s00180-012-0327-z
– volume: 12
  start-page: 1013
  issue: 10
  year: 2007
  ident: 10.1016/j.asoc.2019.105539_b17
  article-title: Fuzzy classification maximum likelihood algorithms for mixed-Weibull distributions
  publication-title: Soft Comput.
  doi: 10.1007/s00500-007-0266-8
– volume: 23
  start-page: 299
  issue: 3
  year: 2008
  ident: 10.1016/j.asoc.2019.105539_b23
  article-title: A length-biased version of the Birnbaum-Saunders distribution with application in water quality
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-008-0215-9
– year: 2019
  ident: 10.1016/j.asoc.2019.105539_b20
  article-title: Finite mixture modeling via skew-Laplace Birnbaum-Saunders distribution
  publication-title: J. Stat. Theory Appl.
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: 10.1016/j.asoc.2019.105539_b9
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 286
  start-page: 134
  year: 2016
  ident: 10.1016/j.asoc.2019.105539_b13
  article-title: Clustering and classification of fuzzy data using the fuzzy EM algorithm
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2015.04.012
– volume: 143
  start-page: 109
  year: 2017
  ident: 10.1016/j.asoc.2019.105539_b24
  article-title: Use of Birnbaum-Saunders distribution for estimating wind speed and wind power probability distributions: A review
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2017.03.083
– volume: 57
  start-page: 365
  issue: 3
  year: 1993
  ident: 10.1016/j.asoc.2019.105539_b10
  article-title: On a class of fuzzy classification maximum likelihood procedures
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/0165-0114(93)90030-L
– volume: 6
  start-page: 319
  issue: 02
  year: 1969
  ident: 10.1016/j.asoc.2019.105539_b21
  article-title: A new family of life distributions
  publication-title: J. Appl. Probab.
  doi: 10.2307/3212003
– volume: 26
  start-page: 195
  issue: 2
  year: 1984
  ident: 10.1016/j.asoc.2019.105539_b1
  article-title: Mixture densities, maximum likelihood and the EM algorithm
  publication-title: SIAM Rev.
  doi: 10.1137/1026034
– year: 2018
  ident: 10.1016/j.asoc.2019.105539_b27
  article-title: Birnbaum-Saunders distribution: A review of models, analysis, and applications
  publication-title: Appl. Stoch. Models Bus. Ind.
– volume: 51
  start-page: 127
  issue: 1
  year: 1989
  ident: 10.1016/j.asoc.2019.105539_b29
  article-title: A fast improvement to the EM algorithm on its own terms
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1989.tb01754.x
– year: 1981
  ident: 10.1016/j.asoc.2019.105539_b31
– volume: 10
  start-page: 339
  issue: 4
  year: 2000
  ident: 10.1016/j.asoc.2019.105539_b2
  article-title: Robust mixture modelling using the t distribution
  publication-title: Stat. Comput.
  doi: 10.1023/A:1008981510081
– volume: 100
  start-page: 421
  issue: 4
  year: 2016
  ident: 10.1016/j.asoc.2019.105539_b6
  article-title: Likelihood-based inference for multivariate skew scale mixtures of normal distributions
  publication-title: AStA Adv. Stat. Anal.
  doi: 10.1007/s10182-016-0266-z
– volume: 70
  start-page: 373
  year: 2016
  ident: 10.1016/j.asoc.2019.105539_b38
  article-title: Credible risk measures with applications in actuarial sciences and finance
  publication-title: Insurance Math. Econom.
  doi: 10.1016/j.insmatheco.2016.06.018
– volume: 171
  start-page: 126
  year: 2019
  ident: 10.1016/j.asoc.2019.105539_b41
  article-title: A novel mixture model using the multivariate normal mean–variance mixture of Birnbaum-Saunders distributions and its application to extrasolar planets
  publication-title: J. Multivariate Anal.
  doi: 10.1016/j.jmva.2018.11.015
– volume: 93
  start-page: 18
  year: 2016
  ident: 10.1016/j.asoc.2019.105539_b7
  article-title: Clustering with the multivariate normal inverse Gaussian distribution
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2014.09.006
– volume: 44
  start-page: 226
  issue: 2
  year: 1982
  ident: 10.1016/j.asoc.2019.105539_b30
  article-title: Finding the observed information matrix when using the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1982.tb01203.x
– volume: 43
  start-page: 283
  issue: 3
  year: 2003
  ident: 10.1016/j.asoc.2019.105539_b34
  article-title: Modified moment estimation for the two-parameter Birnbaum-Saunders distribution
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/S0167-9473(02)00254-2
– volume: 45
  start-page: 1146
  issue: 3
  year: 2012
  ident: 10.1016/j.asoc.2019.105539_b12
  article-title: Fuzzy Gaussian mixture models
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2011.08.028
– volume: 8
  start-page: 338
  issue: 3
  year: 1965
  ident: 10.1016/j.asoc.2019.105539_b15
  article-title: Fuzzy sets
  publication-title: Inf. Control
  doi: 10.1016/S0019-9958(65)90241-X
– volume: 44
  start-page: 978
  issue: 6
  year: 2016
  ident: 10.1016/j.asoc.2019.105539_b40
  article-title: Learning-based EM algorithm for normal-inverse Gaussian mixture model with application to extrasolar planets
  publication-title: J. Appl. Stat.
  doi: 10.1080/02664763.2016.1190322
– year: 2017
  ident: 10.1016/j.asoc.2019.105539_b19
– volume: 24
  start-page: 531
  issue: 4
  year: 2013
  ident: 10.1016/j.asoc.2019.105539_b4
  article-title: Flexible mixture modelling using the multivariate skew-t-normal distribution
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-013-9386-4
– volume: 29
  start-page: 1901
  issue: 13
  year: 2008
  ident: 10.1016/j.asoc.2019.105539_b11
  article-title: Robust fuzzy clustering using mixtures of student’s-t distributions
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2008.06.013
– volume: 28
  start-page: 100
  issue: 1
  year: 1979
  ident: 10.1016/j.asoc.2019.105539_b33
  article-title: A k-means clustering algorithm
  publication-title: J. R. Stat. Soc. Ser. C
– year: 1988
  ident: 10.1016/j.asoc.2019.105539_b32
– year: 2012
  ident: 10.1016/j.asoc.2019.105539_b36
SSID ssj0016928
Score 2.3247507
Snippet Despite the widespread use of Gaussian mixture model for clustering datasets, practical applications show that the skewed and leptokurtic mixture models can be...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105539
SubjectTerms Classification maximum likelihood
EM-type algorithm
Finite mixture of Birnbaum–Saunders distributions
Fuzzy clustering
Title Clustering right-skewed data stream via Birnbaum–Saunders mixture models: A flexible approach based on fuzzy clustering algorithm
URI https://dx.doi.org/10.1016/j.asoc.2019.105539
Volume 82
WOSCitedRecordID wos000484606800052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6FlAMXdkTZNAdulitvsce9haoIkIiQKFJu1szYQ1ISp_KShpyQ-Amc-Hv8Et5sdihQ0QMXy-vYmvf5vTdvReg5kzXUg4i5lMXMjUABcUEoCBdkScIiMaIspKrZRDKZkOk0fTcYfLe5MOtFUpZks0nP_iup4RwQW6bOXoHc3aBwAvaB6LAFssP2nwh_tGhl8QNpAlArb7f-VJyDWiljQVVqCF066zl1XsyrktF2acMdwve0VZkuznK-UX4F1SWn1rnrQhbOlFlWtgi5I-VfLn0Not1uPzu8fy1dfFxV82a23NV8rbpbA99XgextY6WmYoC1rFygVGlabWnv7J_IUGt14W0xq3Ka9zZ0aT3jM30NDqRLYLZrxfD7MK2O8cYEoGLMkYYz67ZEhrXKTp667tFvXF8bIE4PKABaRuulB_3Nv5bYviD6uoBEG-t2mskxMjlGpse4hvaCZJSSIdobvz6evulcVHGqGvd2H24ysnTw4MUv-bPWs6PJnNxGN80SBI81dO6gQVHeRbdsew9suP099LVHEt5FEpZIwhpJGJCELZJ-fPlmMYQNhrDG0CEeY4sgbBGEFYLwqsQKQbhHEO4QdB99eHl8cvTKNT07XB56XiOrEghg8owGAha7ecijkMRemDLKiU8Fi1jESQRSDaaMBzRnhCUgRngIoiAkRR4-QMNyVRYPEYa1hRDMy4lfiMhjlBYcJrTwAy5ADsVkH_l2TjNuCtrLviqL7O_U3EdO98yZLudy6d0jS6rMKKRa0cwAeZc89-hKb3mMbvR_xBM0bKq2eIqu83Uzr6tnBnY_AVmmsiI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clustering+right-skewed+data+stream+via+Birnbaum%E2%80%93Saunders+mixture+models%3A+A+flexible+approach+based+on+fuzzy+clustering+algorithm&rft.jtitle=Applied+soft+computing&rft.au=Hashemi%2C+Farzane&rft.au=Naderi%2C+Mehrdad&rft.au=Mashinchi%2C+Mashallah&rft.date=2019-09-01&rft.issn=1568-4946&rft.volume=82&rft.spage=105539&rft_id=info:doi/10.1016%2Fj.asoc.2019.105539&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2019_105539
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon