Parallel evolutionary approaches for game playing and verification using Intel Xeon Phi

Automatic generation of artificial players is an important subject for the videogames industry. Different strategies have been proposed to implement realistic and intelligent agents for gameplaying and verification. This article presents a parallel evolutionary approach for the automation of compute...

Full description

Saved in:
Bibliographic Details
Published in:Journal of parallel and distributed computing Vol. 133; pp. 258 - 271
Main Authors: Rodríguez, Sebastián, Parodi, Facundo, Nesmachnow, Sergio
Format: Journal Article
Language:English
Published: Elsevier Inc 01.11.2019
Subjects:
ISSN:0743-7315, 1096-0848
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Automatic generation of artificial players is an important subject for the videogames industry. Different strategies have been proposed to implement realistic and intelligent agents for gameplaying and verification. This article presents a parallel evolutionary approach for the automation of computer player generation for video games. A learning pipeline model is defined to study the generation problem for Nintendo Entertainment System games composed of three stages: objective inference, objective refinement and artificial intelligence generation. Two case studies based on the defined pipeline are presented: an evolutionary algorithm to learn how to play the game Pinball, offloading the evaluation of the fitness function to a Xeon Phi coprocessor, and a full pipeline implementation that uses neuroevolution to generate RNNs that can play different games successfully. Results show that the proposed pipeline can be applied for the automatic generation of artificial players for the studied games. •Parallel evolutionary approaches for the automation of computer player generation for video games are introduced.•A learning pipeline model is defined to study the generation problem for Nintendo Entertainment System games.•A parallel evolutionary algorithm using Xeon Phi to learn how to play the game Pinball is presented.•A full pipeline implementation that uses neuroevolution to generate RNNs for playing different games is introduced.
AbstractList Automatic generation of artificial players is an important subject for the videogames industry. Different strategies have been proposed to implement realistic and intelligent agents for gameplaying and verification. This article presents a parallel evolutionary approach for the automation of computer player generation for video games. A learning pipeline model is defined to study the generation problem for Nintendo Entertainment System games composed of three stages: objective inference, objective refinement and artificial intelligence generation. Two case studies based on the defined pipeline are presented: an evolutionary algorithm to learn how to play the game Pinball, offloading the evaluation of the fitness function to a Xeon Phi coprocessor, and a full pipeline implementation that uses neuroevolution to generate RNNs that can play different games successfully. Results show that the proposed pipeline can be applied for the automatic generation of artificial players for the studied games. •Parallel evolutionary approaches for the automation of computer player generation for video games are introduced.•A learning pipeline model is defined to study the generation problem for Nintendo Entertainment System games.•A parallel evolutionary algorithm using Xeon Phi to learn how to play the game Pinball is presented.•A full pipeline implementation that uses neuroevolution to generate RNNs for playing different games is introduced.
Author Parodi, Facundo
Rodríguez, Sebastián
Nesmachnow, Sergio
Author_xml – sequence: 1
  givenname: Sebastián
  surname: Rodríguez
  fullname: Rodríguez, Sebastián
  email: sebastian.rodriguez.leopold@fing.edu.uy
– sequence: 2
  givenname: Facundo
  surname: Parodi
  fullname: Parodi, Facundo
  email: facundo.parodi@fing.edu.uy
– sequence: 3
  givenname: Sergio
  orcidid: 0000-0002-8146-4012
  surname: Nesmachnow
  fullname: Nesmachnow, Sergio
  email: sergion@fing.edu.uy
BookMark eNp9kM1Kw0AUhQepYFt9AVfzAol3Mpmfghsp_hQKdqHobphMbtoJaRImaaFvb2JduejqwuF-B843I5O6qZGQewYxAyYfyrhscxcnwHQMKgYGV2TKYCEj0KmekCmolEeKM3FDZl1XAjAmlJ6Sr40NtqqwonhsqkPvm9qGE7VtGxrrdtjRogl0a_dI28qefL2lts7pEYMvvLPjPz10Y7yq-6HlG4dgs_O35LqwVYd3f3dOPl-eP5Zv0fr9dbV8WkeOA_SRLDKmQOaopBa5c7lSMteCS7koUp6BwJRrxtMiYc7aRGIGizQTLBHSilQgn5Pk3OtC03UBC9MGvx8mGAZmVGNKM6oxoxoDygxqBkj_g5zvf7f0wfrqMvp4RnEYdfQYTOc81g5zH9D1Jm_8JfwHDoyCNg
CitedBy_id crossref_primary_10_1016_j_jpdc_2019_07_010
Cites_doi 10.1016/j.entcom.2012.10.001
10.1504/IJMHEUR.2014.068914
10.1162/106365602320169811
10.1038/nature14236
10.1016/0305-0548(86)90048-1
10.1109/TCIAIG.2015.2494596
10.1109/TCIAIG.2013.2294713
10.1109/TSSC.1968.300136
10.1109/TCIAIG.2014.2339221
10.1109/COGANN.1992.273950
10.24963/ijcai.2017/390
10.1111/j.1475-3995.2012.00862.x
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright_xml – notice: 2018 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.jpdc.2018.07.010
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1096-0848
EndPage 271
ExternalDocumentID 10_1016_j_jpdc_2018_07_010
S074373151830491X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFSI
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADHUB
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
E.L
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K-O
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
TWZ
WUQ
XJT
XOL
XPP
ZMT
ZU3
ZY4
~G-
~G0
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-6fb1706de7685dccd776d853669f43b05e438134f21caa26eb094b51256a545e3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000488138800023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0743-7315
IngestDate Sat Nov 29 07:14:16 EST 2025
Tue Nov 18 21:09:47 EST 2025
Fri Feb 23 02:31:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Xeon Phi
Parallel evolutionary algorithms
Neuroevolution
NES
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-6fb1706de7685dccd776d853669f43b05e438134f21caa26eb094b51256a545e3
ORCID 0000-0002-8146-4012
PageCount 14
ParticipantIDs crossref_primary_10_1016_j_jpdc_2018_07_010
crossref_citationtrail_10_1016_j_jpdc_2018_07_010
elsevier_sciencedirect_doi_10_1016_j_jpdc_2018_07_010
PublicationCentury 2000
PublicationDate November 2019
2019-11-00
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: November 2019
PublicationDecade 2010
PublicationTitle Journal of parallel and distributed computing
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Alba, Luque, Nesmachnow (b1) 2013; 20
García-Sánchez, Tonda, Mora, Squillero, Merelo (b10) 2015
Glover (b11) 1986; 13
Barriga, Stanescu, Buro (b4) 2014
Bourki, Chaslot, Coulm, Danjean, Doghmen, Hoock, Hérault, Rimmel, Teytaud, Teytaud (b6) 2010
Murphy (b21) 2013
Hausknecht, Lehman, Miikkulainen, Stone (b15) 2014; 6
Osborn, Mateas (b25) 2014
Togelius, Karakovskiy, Koutník, Schmidhuber (b32) 2009
D. Dyer, Watchmaker framework for evolutionary computation, [Online]
Jørgensen, Sandberg (b17) 2009
Chaslot, Winands, van Den Herik (b7) 2008
Guzdial, Riedl (b13) 2016
M. Bodén, A guide to recurrent neural networks and backpropagation, The Dallas project, 2001.
Nesmachnow (b22) 2010; 61
A. Summerville, J. Osborn, M. Mateas, Charda: Causal hybrid automata recovery via dynamic analysis, 2017. ArXiv preprint
Bäck, Fogel, Michalewicz (b3) 1997
Hong, Cho (b16) 2004
(Accessed October 2016).
J. Schaffer, D. Whitley, L. Eshelman, Combinations of genetic algorithms and neural networks: a survey of the state of the art, in: International Workshop on Combinations of Genetic Algorithms and Neural Networks, 1992, 1–37.
Ortega, Shaker, Togelius, Yannakakis (b24) 2013; 4
Yannakakis, Togelius (b35) 2018
Aloupis, Demaine, Guo, Viglietta (b2) 2014
Leane, Noman (b18) 2017
Fang, Sips, Zhang, Xu, Che, Varbanescu (b9) 2014
Nesmachnow (b23) 2014; 3
Van Hasselt, Guez, Silver (b33) 2016
Risi, Togelius (b27) 2017; 9
Stanley, Miikkulainen (b30) 2002; 10
Yannakakis, Togelius (b34) 2015
Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski (b20) 2015; 518
.
F. Parodi, S. Rodríguez Leopold, S. Iturriaga, S. Nesmachnow, Optimizing a pinball computer player using evolutionary algorithms, in: Proceedings of the XVIII Latin-Iberoamerican Conference on Operations Research, 2016.
Logas, Whitehead, Mateas, Vallejos, Scott, Shapiro, Murray, Compton, Osborn, Salvatore (b19) 2014
Simpson (b29) 2012
Hart, Nilsson, Raphael (b14) 1968; 4
Guzdial, Li, Riedl (b12) 2017
Zook, Harrison, Riedl (b36) 2015
Bourki (10.1016/j.jpdc.2018.07.010_b6) 2010
García-Sánchez (10.1016/j.jpdc.2018.07.010_b10) 2015
Mnih (10.1016/j.jpdc.2018.07.010_b20) 2015; 518
10.1016/j.jpdc.2018.07.010_b5
Guzdial (10.1016/j.jpdc.2018.07.010_b13) 2016
10.1016/j.jpdc.2018.07.010_b8
Guzdial (10.1016/j.jpdc.2018.07.010_b12) 2017
Fang (10.1016/j.jpdc.2018.07.010_b9) 2014
Togelius (10.1016/j.jpdc.2018.07.010_b32) 2009
Nesmachnow (10.1016/j.jpdc.2018.07.010_b22) 2010; 61
10.1016/j.jpdc.2018.07.010_b31
Stanley (10.1016/j.jpdc.2018.07.010_b30) 2002; 10
Hong (10.1016/j.jpdc.2018.07.010_b16) 2004
10.1016/j.jpdc.2018.07.010_b28
Simpson (10.1016/j.jpdc.2018.07.010_b29) 2012
Logas (10.1016/j.jpdc.2018.07.010_b19) 2014
Yannakakis (10.1016/j.jpdc.2018.07.010_b34) 2015
Hausknecht (10.1016/j.jpdc.2018.07.010_b15) 2014; 6
Leane (10.1016/j.jpdc.2018.07.010_b18) 2017
Ortega (10.1016/j.jpdc.2018.07.010_b24) 2013; 4
Alba (10.1016/j.jpdc.2018.07.010_b1) 2013; 20
Murphy (10.1016/j.jpdc.2018.07.010_b21) 2013
Van Hasselt (10.1016/j.jpdc.2018.07.010_b33) 2016
Risi (10.1016/j.jpdc.2018.07.010_b27) 2017; 9
Zook (10.1016/j.jpdc.2018.07.010_b36) 2015
Hart (10.1016/j.jpdc.2018.07.010_b14) 1968; 4
Bäck (10.1016/j.jpdc.2018.07.010_b3) 1997
Osborn (10.1016/j.jpdc.2018.07.010_b25) 2014
Yannakakis (10.1016/j.jpdc.2018.07.010_b35) 2018
Chaslot (10.1016/j.jpdc.2018.07.010_b7) 2008
Jørgensen (10.1016/j.jpdc.2018.07.010_b17) 2009
Nesmachnow (10.1016/j.jpdc.2018.07.010_b23) 2014; 3
10.1016/j.jpdc.2018.07.010_b26
Aloupis (10.1016/j.jpdc.2018.07.010_b2) 2014
Glover (10.1016/j.jpdc.2018.07.010_b11) 1986; 13
Barriga (10.1016/j.jpdc.2018.07.010_b4) 2014
References_xml – year: 2016
  ident: b13
  article-title: Game level generation from gameplay videos
  publication-title: Twelfth Artificial Intelligence and Interactive Digital Entertainment Conference
– start-page: 284
  year: 2015
  end-page: 291
  ident: b10
  article-title: Towards automatic StarCraft strategy generation using genetic programming
  publication-title: Computational Intelligence and Games (CIG), 2015 IEEE Conference on
– reference: F. Parodi, S. Rodríguez Leopold, S. Iturriaga, S. Nesmachnow, Optimizing a pinball computer player using evolutionary algorithms, in: Proceedings of the XVIII Latin-Iberoamerican Conference on Operations Research, 2016.
– volume: 13
  start-page: 533
  year: 1986
  end-page: 549
  ident: b11
  article-title: Future paths for integer programming and links to artificial intelligence
  publication-title: Comput. Oper. Res.
– year: 2009
  ident: b17
  article-title: Playing Mario Using Advanced AI Techniques
– volume: 9
  start-page: 25
  year: 2017
  end-page: 41
  ident: b27
  article-title: Neuroevolution in games: state of the art and open challenges
  publication-title: IEEE Trans. Comput. Intell. AI Games
– year: 2018
  ident: b35
  article-title: Artificial Intelligence and Games
– start-page: 19
  year: 2017
  end-page: 24
  ident: b18
  article-title: An evolutionary metaheuristic algorithm to optimise solutions to NES games
  publication-title: Intelligent and Evolutionary Systems (IES), 2017 21st Asia Pacific Symposium on
– start-page: 112
  year: 2013
  end-page: 133
  ident: b21
  article-title: The first level of Super Mario Bros. is easy with lexicographic orderings and time travel
  publication-title: Proc. 7th Annual SIGBOVIK Conference
– reference: A. Summerville, J. Osborn, M. Mateas, Charda: Causal hybrid automata recovery via dynamic analysis, 2017. ArXiv preprint
– start-page: 1
  year: 2014
  end-page: 7
  ident: b4
  article-title: Parallel UCT search on GPUs
  publication-title: Computational Intelligence and Games (CIG), 2014 IEEE Conference on
– volume: 61
  start-page: 12
  year: 2010
  end-page: 15
  ident: b22
  article-title: Computacion científica de alto desempeño en la F́acultad de Ingeniería, Universidad de la República
  publication-title: Rev. Asoc. Ingenieros Uruguay
– year: 2014
  ident: b25
  article-title: A game-independent play trace dissimilarity metric
  publication-title: Proceedings of the 9th International Conference on Foundations of Digital Games
– year: 1997
  ident: b3
  article-title: Handbook of Evolutionary Computation
– reference: J. Schaffer, D. Whitley, L. Eshelman, Combinations of genetic algorithms and neural networks: a survey of the state of the art, in: International Workshop on Combinations of Genetic Algorithms and Neural Networks, 1992, 1–37.
– year: 2012
  ident: b29
  article-title: Evolutionary Artificial Intelligence in Video Games
– reference: D. Dyer, Watchmaker framework for evolutionary computation, [Online]
– start-page: 317
  year: 2015
  end-page: 335
  ident: b34
  article-title: A panorama of artificial and computational intelligence in games
  publication-title: IEEE Trans. Comput. Intell. AI Games
– start-page: 40
  year: 2014
  ident: b2
  article-title: Classic nintendo games are (computationally) hard
  publication-title: Fun with Algorithms: 7th International Conference, FUN 2014, Lipari Island, Sicily, Italy, July 1–3, 2014, Proceedings, vol. 8496
– year: 2017
  ident: b12
  article-title: Game engine learning from video
  publication-title: 26th International Joint Conference on Artificial Intelligence
– start-page: 2094
  year: 2016
  end-page: 2100
  ident: b33
  article-title: Deep Reinforcement Learning with Double Q-Learning
  publication-title: AAAI, vol. 16
– volume: 10
  start-page: 99
  year: 2002
  end-page: 127
  ident: b30
  article-title: Evolving neural networks through augmenting topologies
  publication-title: Evol. Comput.
– volume: 4
  start-page: 93
  year: 2013
  end-page: 104
  ident: b24
  article-title: Imitating human playing styles in super mario bros
  publication-title: Entertainment Comput.
– start-page: 156
  year: 2009
  end-page: 161
  ident: b32
  article-title: Super mario evolution
  publication-title: Computational Intelligence and Games, 2009. CIG 2009. IEEE Symposium on
– year: 2015
  ident: b36
  article-title: Monte-carlo tree search for simulation-based strategy analysis
  publication-title: Proceedings of the 10th Conference on the Foundations of Digital Games
– volume: 4
  start-page: 100
  year: 1968
  end-page: 107
  ident: b14
  article-title: A formal basis for the heuristic determination of minimum cost paths
  publication-title: IEEE Trans. Syst. Sci. Cybern.
– volume: 3
  start-page: 320
  year: 2014
  end-page: 347
  ident: b23
  article-title: An overview of metaheuristics: accurate and efficient methods for optimisation
  publication-title: Int. J. Metaheuristics
– volume: 20
  start-page: 1
  year: 2013
  end-page: 48
  ident: b1
  article-title: Parallel metaheuristics: recent advances and new trends
  publication-title: Int. Trans. Oper. Res.
– start-page: 60
  year: 2008
  end-page: 71
  ident: b7
  article-title: Parallel monte-carlo tree search
  publication-title: International Conference on Computers and Games
– volume: 6
  start-page: 355
  year: 2014
  end-page: 366
  ident: b15
  article-title: A neuroevolution approach to general Atari game playing
  publication-title: IEEE Trans. Comput. Intell. AI Games
– volume: 518
  start-page: 529
  year: 2015
  ident: b20
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
– reference: .
– start-page: 48
  year: 2010
  end-page: 58
  ident: b6
  article-title: Scalability and parallelization of monte-carlo tree search
  publication-title: International Conference on Computers and Games
– reference: M. Bodén, A guide to recurrent neural networks and backpropagation, The Dallas project, 2001.
– reference: . (Accessed October 2016).
– start-page: 137
  year: 2014
  end-page: 148
  ident: b9
  article-title: Test-driving Intel Xeon Phi
  publication-title: 5th ACM/SPEC international conference on Performance engineering
– start-page: 634
  year: 2004
  end-page: 638
  ident: b16
  article-title: Evolution of emergent behaviors for shooting game characters in Robocode
  publication-title: Evolutionary Computation, 2004. CEC2004. Congress on, vol. 1
– year: 2014
  ident: b19
  article-title: Software verification games: Designing Xylem, The Code of Plants
  publication-title: Proceedings of the 9th International Conference on Foundations of Digital Games
– volume: 4
  start-page: 93
  issue: 2
  year: 2013
  ident: 10.1016/j.jpdc.2018.07.010_b24
  article-title: Imitating human playing styles in super mario bros
  publication-title: Entertainment Comput.
  doi: 10.1016/j.entcom.2012.10.001
– volume: 3
  start-page: 320
  issue: 4
  year: 2014
  ident: 10.1016/j.jpdc.2018.07.010_b23
  article-title: An overview of metaheuristics: accurate and efficient methods for optimisation
  publication-title: Int. J. Metaheuristics
  doi: 10.1504/IJMHEUR.2014.068914
– ident: 10.1016/j.jpdc.2018.07.010_b5
– volume: 10
  start-page: 99
  issue: 2
  year: 2002
  ident: 10.1016/j.jpdc.2018.07.010_b30
  article-title: Evolving neural networks through augmenting topologies
  publication-title: Evol. Comput.
  doi: 10.1162/106365602320169811
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  ident: 10.1016/j.jpdc.2018.07.010_b20
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 13
  start-page: 533
  issue: 5
  year: 1986
  ident: 10.1016/j.jpdc.2018.07.010_b11
  article-title: Future paths for integer programming and links to artificial intelligence
  publication-title: Comput. Oper. Res.
  doi: 10.1016/0305-0548(86)90048-1
– volume: 9
  start-page: 25
  issue: 1
  year: 2017
  ident: 10.1016/j.jpdc.2018.07.010_b27
  article-title: Neuroevolution in games: state of the art and open challenges
  publication-title: IEEE Trans. Comput. Intell. AI Games
  doi: 10.1109/TCIAIG.2015.2494596
– start-page: 60
  year: 2008
  ident: 10.1016/j.jpdc.2018.07.010_b7
  article-title: Parallel monte-carlo tree search
– year: 2017
  ident: 10.1016/j.jpdc.2018.07.010_b12
  article-title: Game engine learning from video
– volume: 6
  start-page: 355
  issue: 4
  year: 2014
  ident: 10.1016/j.jpdc.2018.07.010_b15
  article-title: A neuroevolution approach to general Atari game playing
  publication-title: IEEE Trans. Comput. Intell. AI Games
  doi: 10.1109/TCIAIG.2013.2294713
– start-page: 156
  year: 2009
  ident: 10.1016/j.jpdc.2018.07.010_b32
  article-title: Super mario evolution
– ident: 10.1016/j.jpdc.2018.07.010_b26
– year: 2018
  ident: 10.1016/j.jpdc.2018.07.010_b35
– start-page: 48
  year: 2010
  ident: 10.1016/j.jpdc.2018.07.010_b6
  article-title: Scalability and parallelization of monte-carlo tree search
– year: 2009
  ident: 10.1016/j.jpdc.2018.07.010_b17
– volume: 4
  start-page: 100
  issue: 2
  year: 1968
  ident: 10.1016/j.jpdc.2018.07.010_b14
  article-title: A formal basis for the heuristic determination of minimum cost paths
  publication-title: IEEE Trans. Syst. Sci. Cybern.
  doi: 10.1109/TSSC.1968.300136
– start-page: 19
  year: 2017
  ident: 10.1016/j.jpdc.2018.07.010_b18
  article-title: An evolutionary metaheuristic algorithm to optimise solutions to NES games
– year: 1997
  ident: 10.1016/j.jpdc.2018.07.010_b3
– start-page: 2094
  year: 2016
  ident: 10.1016/j.jpdc.2018.07.010_b33
  article-title: Deep Reinforcement Learning with Double Q-Learning
– year: 2014
  ident: 10.1016/j.jpdc.2018.07.010_b19
  article-title: Software verification games: Designing Xylem, The Code of Plants
– year: 2014
  ident: 10.1016/j.jpdc.2018.07.010_b25
  article-title: A game-independent play trace dissimilarity metric
– start-page: 40
  year: 2014
  ident: 10.1016/j.jpdc.2018.07.010_b2
  article-title: Classic nintendo games are (computationally) hard
– start-page: 137
  year: 2014
  ident: 10.1016/j.jpdc.2018.07.010_b9
  article-title: Test-driving Intel Xeon Phi
– start-page: 634
  year: 2004
  ident: 10.1016/j.jpdc.2018.07.010_b16
  article-title: Evolution of emergent behaviors for shooting game characters in Robocode
– start-page: 317
  year: 2015
  ident: 10.1016/j.jpdc.2018.07.010_b34
  article-title: A panorama of artificial and computational intelligence in games
  publication-title: IEEE Trans. Comput. Intell. AI Games
  doi: 10.1109/TCIAIG.2014.2339221
– volume: 61
  start-page: 12
  issue: 1
  year: 2010
  ident: 10.1016/j.jpdc.2018.07.010_b22
  article-title: Computacion científica de alto desempeño en la F́acultad de Ingeniería, Universidad de la República
  publication-title: Rev. Asoc. Ingenieros Uruguay
– start-page: 1
  year: 2014
  ident: 10.1016/j.jpdc.2018.07.010_b4
  article-title: Parallel UCT search on GPUs
– year: 2015
  ident: 10.1016/j.jpdc.2018.07.010_b36
  article-title: Monte-carlo tree search for simulation-based strategy analysis
– ident: 10.1016/j.jpdc.2018.07.010_b28
  doi: 10.1109/COGANN.1992.273950
– ident: 10.1016/j.jpdc.2018.07.010_b8
– year: 2016
  ident: 10.1016/j.jpdc.2018.07.010_b13
  article-title: Game level generation from gameplay videos
– start-page: 284
  year: 2015
  ident: 10.1016/j.jpdc.2018.07.010_b10
  article-title: Towards automatic StarCraft strategy generation using genetic programming
– year: 2012
  ident: 10.1016/j.jpdc.2018.07.010_b29
– ident: 10.1016/j.jpdc.2018.07.010_b31
  doi: 10.24963/ijcai.2017/390
– volume: 20
  start-page: 1
  year: 2013
  ident: 10.1016/j.jpdc.2018.07.010_b1
  article-title: Parallel metaheuristics: recent advances and new trends
  publication-title: Int. Trans. Oper. Res.
  doi: 10.1111/j.1475-3995.2012.00862.x
– start-page: 112
  year: 2013
  ident: 10.1016/j.jpdc.2018.07.010_b21
  article-title: The first level of Super Mario Bros. is easy with lexicographic orderings and time travel
SSID ssj0011578
Score 2.2405388
Snippet Automatic generation of artificial players is an important subject for the videogames industry. Different strategies have been proposed to implement realistic...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 258
SubjectTerms NES
Neuroevolution
Parallel evolutionary algorithms
Xeon Phi
Title Parallel evolutionary approaches for game playing and verification using Intel Xeon Phi
URI https://dx.doi.org/10.1016/j.jpdc.2018.07.010
Volume 133
WOSCitedRecordID wos000488138800023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-0848
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011578
  issn: 0743-7315
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9swDBaydodd9h7avaDDboEL27It-1hsLbZhKAK0w3wzZEnOEqSOkdlB92P6X0takuvuUWwDdjECIXpE_ELRIvmRkDc6EjJMtfCkr0ovkiLzsrAsPabitGQVsun0icKf-MlJmufZbDK5dLkw2xWv6_TiImv-q6ihDYSNqbN_Ie5hUGiAzyB0eILY4flHgp-JDdZHWU311s6DgXGOO1z3_AvTuTjXWEH6u8tRhJ-JQUMGDp2NI2hhlFxDw-zr4jdWbONmw0EUsvBiAS3d58o1XesOxt6lo4xb_t28M9fWpxrO0HbRNwYDSGH9a9XHGBwL2dVqPfJlnQt0BBhvlN7MTQyZu7QIMpu9N9ykuWyaG8GePV0qZya980AbhexjkHRq2DgHjc3YWOca7nd7fIemostPJ4O5pFgeLBuFzJVB2nO22pDam4zbp7gQXAeoO3iBCvI7ZDfkcQZ6f_fww1H-cXBTBbE56t3CbVaWCSD8caZfWz4ja-bsIblvBUgPDXwekYmuH5MHrsQHtRr_Cfni0ETHaKLXaKKAJopoohZNFIBAx2iiPZpojyaKaKKApqfk8_HR2dv3nq3F4Unm-62XVCUSLSkNr6exklJxnigw9ZIkqyJW-rFGrjgWVWEghQgTXfpZVII1GScCjHTNnpGdel3rPUJLgd7hiPMs5JEMGDJS6hQ0RhXBHIHcJ4Hbp0Jaonqsl7IqXETissC9LXBvC58XsLf7ZDr0aQxNy63fjt32F9bQNAZkAWi5pd_zf-z3gty7_hO8JDvtptOvyF25bRffNq8tqK4AqXKkTA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+evolutionary+approaches+for+game+playing+and+verification+using+Intel+Xeon+Phi&rft.jtitle=Journal+of+parallel+and+distributed+computing&rft.au=Rodr%C3%ADguez%2C+Sebasti%C3%A1n&rft.au=Parodi%2C+Facundo&rft.au=Nesmachnow%2C+Sergio&rft.date=2019-11-01&rft.pub=Elsevier+Inc&rft.issn=0743-7315&rft.eissn=1096-0848&rft.volume=133&rft.spage=258&rft.epage=271&rft_id=info:doi/10.1016%2Fj.jpdc.2018.07.010&rft.externalDocID=S074373151830491X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7315&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7315&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7315&client=summon