Rule-based fuzzy neural networks realized with the aid of linear function Prototype-driven fuzzy clustering and layer Reconstruction-based network design strategy

In this study, we introduce novel fuzzy neural networks designed with the aid of linear function prototype-driven fuzzy clustering (LFPFC) and layer reconstruction-based network design strategy to deal with the regression problem. The LFPFC constitutes a new clustering technique inspired by the fuzz...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Expert systems with applications Ročník 219; s. 119655
Hlavní autori: Park, Sang-Beom, Oh, Sung-Kwun, Kim, Eun-Hu, Pedrycz, Witold
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.06.2023
Predmet:
ISSN:0957-4174, 1873-6793
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this study, we introduce novel fuzzy neural networks designed with the aid of linear function prototype-driven fuzzy clustering (LFPFC) and layer reconstruction-based network design strategy to deal with the regression problem. The LFPFC constitutes a new clustering technique inspired by the fuzzy c-regression model (FCRM) clustering unlike fuzzy c-means (FCM) clustering LFPFC represents the prototypes of clusters as linear functions, and this can lead to more reliable data analysis of complex regression problems. We propose two types of LFPFC such as an estimated output-based LFPFC and a distance-based LFPFC. The estimated output-based LFPFC uses the output estimated on a basis of the simple model instead of the target output to calculate the centroid of LFPFC. A centroid of distance-based LFPFC is computed through the Euclidean distance between input data and the centroid of the cluster. By using two kinds of LFPFC approaches, we propose three different types of fuzzy neural networks: i) the fuzzy neural networks through layer reconstruction-based network design strategy consists of two models. The first model serves as an estimate of the desired output and the estimated output is used in the LFPFC of the second model. ii) In the fuzzy neural networks applied to the basic architecture of distance-based LFPFC, the hidden layer using the membership function changes to basic distance-based LFPFC, and the partition matrix obtained from LFPFC is used as the output of the hidden layer. iii) in the fuzzy neural network with the advanced architecture of distance-based LFPFC, an additional auxiliary layer is considered between the hidden and output layers to estimate the membership function of output space through LFPFC. In the experiments, we evaluate the performance index of the proposed models using publicly available machine learning datasets. The superiority of the proposed fuzzy neural networks designed by using LFPFC is demonstrated through the comparative analysis with the diverse regression models offered in the Weka data mining software. By conducting the Friedman test we show that the proposed model exhibits visible competitiveness from the viewpoint of performance. In addition, a real-world Portland cement dataset is dealt with to demonstrate the superiority of the models designed with the aid of LFPFC and reinforced layer reconstruction-based network design strategy.
AbstractList In this study, we introduce novel fuzzy neural networks designed with the aid of linear function prototype-driven fuzzy clustering (LFPFC) and layer reconstruction-based network design strategy to deal with the regression problem. The LFPFC constitutes a new clustering technique inspired by the fuzzy c-regression model (FCRM) clustering unlike fuzzy c-means (FCM) clustering LFPFC represents the prototypes of clusters as linear functions, and this can lead to more reliable data analysis of complex regression problems. We propose two types of LFPFC such as an estimated output-based LFPFC and a distance-based LFPFC. The estimated output-based LFPFC uses the output estimated on a basis of the simple model instead of the target output to calculate the centroid of LFPFC. A centroid of distance-based LFPFC is computed through the Euclidean distance between input data and the centroid of the cluster. By using two kinds of LFPFC approaches, we propose three different types of fuzzy neural networks: i) the fuzzy neural networks through layer reconstruction-based network design strategy consists of two models. The first model serves as an estimate of the desired output and the estimated output is used in the LFPFC of the second model. ii) In the fuzzy neural networks applied to the basic architecture of distance-based LFPFC, the hidden layer using the membership function changes to basic distance-based LFPFC, and the partition matrix obtained from LFPFC is used as the output of the hidden layer. iii) in the fuzzy neural network with the advanced architecture of distance-based LFPFC, an additional auxiliary layer is considered between the hidden and output layers to estimate the membership function of output space through LFPFC. In the experiments, we evaluate the performance index of the proposed models using publicly available machine learning datasets. The superiority of the proposed fuzzy neural networks designed by using LFPFC is demonstrated through the comparative analysis with the diverse regression models offered in the Weka data mining software. By conducting the Friedman test we show that the proposed model exhibits visible competitiveness from the viewpoint of performance. In addition, a real-world Portland cement dataset is dealt with to demonstrate the superiority of the models designed with the aid of LFPFC and reinforced layer reconstruction-based network design strategy.
ArticleNumber 119655
Author Kim, Eun-Hu
Pedrycz, Witold
Park, Sang-Beom
Oh, Sung-Kwun
Author_xml – sequence: 1
  givenname: Sang-Beom
  surname: Park
  fullname: Park, Sang-Beom
  email: sangbeom91@suwon.ac.kr
  organization: School of Electrical & Electronic Engineering, The University of Suwon, 17 Wauan-gil, Bongdam-eup, Hwaseong-si, Gyeonggi-do 18323, South Korea
– sequence: 2
  givenname: Sung-Kwun
  orcidid: 0000-0001-6798-8955
  surname: Oh
  fullname: Oh, Sung-Kwun
  email: ohsk@suwon.ac.kr
  organization: School of Electrical & Electronic Engineering, The University of Suwon, 17 Wauan-gil, Bongdam-eup, Hwaseong-si, Gyeonggi-do 18323, South Korea
– sequence: 3
  givenname: Eun-Hu
  orcidid: 0000-0002-3636-1524
  surname: Kim
  fullname: Kim, Eun-Hu
  email: wdkim@suwon.ac.kr
  organization: Research Center for Big Data and Artificial Intelligence, Linyi University, Linyi 276005, China
– sequence: 4
  givenname: Witold
  surname: Pedrycz
  fullname: Pedrycz, Witold
  email: wpedrycz@ualberta.ca
  organization: Department of Electrical & Computer Engineering, University of Alberta, Edmonton T6R 2V4 AB, Canada
BookMark eNp9kMtKxDAUhoMoOI6-gKu8QGvS9JKCGxFvICiDrkOanI4ZayJJ6tB5HJ_U1unKhauzOHz_f853gg6ts4DQOSUpJbS82KQQtjLNSMZSSuuyKA7QgvKKJWVVs0O0IHVRJTmt8mN0EsKGEFoRUi3Q96rvIGlkAI3bfrcbsIXey24ccev8e8AeZGd243pr4huOb4Cl0di1uDMWpB8pq6JxFj97F10cPiHR3nyBnfNU14cI3tg1llbjTg7g8QqUsyH6_hed--dKrCGYtcXjWkZYD6foqJVdgLN5LtHr7c3L9X3y-HT3cH31mChGSBwfpUqrJoM8V7qQWcs0lG3BecuA5jWjDdclV0SrnDBFy0oTXueqgVrzJufAlojvc5V3IXhohTJRTveNh5hOUCIm12IjJtdici32rkc0-4N-evMh_fA_dLmHYHzqy4AXQRmwCrTxoKLQzvyH_wDo-6Da
CitedBy_id crossref_primary_10_1109_TII_2023_3326533
crossref_primary_10_1007_s40747_024_01560_7
crossref_primary_10_3390_math13071156
crossref_primary_10_1016_j_knosys_2025_113679
crossref_primary_10_1016_j_fss_2024_108969
Cites_doi 10.1016/j.knosys.2016.12.003
10.1016/j.knosys.2020.106467
10.4028/www.scientific.net/AMM.278-280.1323
10.1016/j.asoc.2020.106275
10.1016/j.knosys.2019.105229
10.1016/0098-3004(84)90020-7
10.1016/j.ins.2011.10.015
10.1016/j.eswa.2021.115761
10.1049/iet-cta:20060415
10.1109/TFUZZ.2017.2785244
10.1016/j.asoc.2021.107766
10.2478/v10006-012-0047-0
10.1109/TFUZZ.2017.2704542
10.1016/j.eswa.2020.113856
10.1080/03081079.2015.1072523
10.1109/TCYB.2016.2628182
10.1016/j.neucom.2020.11.029
10.1109/TFUZZ.2013.2286993
10.1109/91.413225
10.1109/TIP.2012.2226048
10.1109/TCYB.2016.2638861
10.1007/s11222-009-9153-8
10.1007/s00500-018-3265-z
10.1109/91.873580
10.1109/91.236552
10.1016/j.eswa.2020.113702
10.1109/TFUZZ.2004.840099
10.1016/C2009-0-19715-5
10.1016/j.fss.2014.12.004
10.1016/j.engappai.2009.02.003
10.1007/s40815-018-0497-0
10.1016/j.neunet.2018.03.018
10.1016/j.neucom.2021.06.047
10.1109/TCYB.2014.2382679
10.1080/01969727408546062
10.1016/j.knosys.2021.106750
10.1016/j.knosys.2009.12.002
10.1109/TNNLS.2017.2665581
10.1016/j.eswa.2010.07.112
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2023.119655
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2023_119655
S0957417423001562
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c300t-671cdcb2e44cd5a2f3de6f588f3e14931b8d68c0dc403c167d0894cbe9d8b48e3
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000946050100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sat Nov 29 07:04:59 EST 2025
Tue Nov 18 22:04:52 EST 2025
Fri Feb 23 02:35:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Distance-based LFPFC
Estimated output-based LFPFC
Linear function prototype-driven fuzzy clustering (LFPFC)
Layer reconstruction-based network design strategy
Fuzzy c-regression model (FCRM) clustering
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-671cdcb2e44cd5a2f3de6f588f3e14931b8d68c0dc403c167d0894cbe9d8b48e3
ORCID 0000-0001-6798-8955
0000-0002-3636-1524
ParticipantIDs crossref_citationtrail_10_1016_j_eswa_2023_119655
crossref_primary_10_1016_j_eswa_2023_119655
elsevier_sciencedirect_doi_10_1016_j_eswa_2023_119655
PublicationCentury 2000
PublicationDate 2023-06-01
2023-06-00
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References (5), https://doi.org/3054-3068. 10.1109/TFUZZ.2017.2785244.
Neville (b0130) 2012
Shi, Zhang, Zhang, Sun, Song (b0170) 2020; 191
Campos Souza (b0025) 2020; 92
Leski, Kotas (b0110) 2015; 279
Celik, Lee (b0030) 2012; 22
Kim, Oh, Pedrycz (b0100) 2018; 104
Askari, Saeed, Younas (b0010) 2020; 161
Qian, Sui (b0160) 2021; 186
Zhang, Oh, Pedrycz, Yang, Han (b0210) 2021; 112
Izakian, Abraham (b0080) 2011; 38
Pal, Pal, Keller, Bezdek (b0145) 2005; 13
Yeh, Su (b0195) 2016; 47
Parker, Hall (b0150) 2013; 22
Zhou, Wang, Huang, Liu (b0215) 2021; 213
Bezdek, Ehrlich, Full (b0015) 1984; 10
Huang, Oh, Pedrycz (b0075) 2021; 458
Dunn (b0045) 1974; 4
Chen, Liu, Xie, Zhang, Chen (b0035) 2016; 47
Pramod, Pillai (b0155) 2021; 215
Zarandi, Gamasaee, Turksen (b0205) 2012; 187
Yu, Song, Zhang (b0200) 2013; 278–280
,
Güler Dincer (b0055) 2018; 20
Kung, Su (b0105) 2007; 1
Edition, Morgan Kaufmann. https://doi.org/10.1016/C2009-0-19715-5.
Soltani, Chaari, Ben Hmida (b0175) 2012; 22
4
(3), 1104-1113. https://doi.org/ 10.1109/TFUZZ.2017.2704542.
Fushiki (b0050) 2011; 21
Zou, W., Li, C., & Zhang, N. (2017). A T-S fuzzy model identification approach based on a modified inter type-2 FRCM algorithm.
Wang, Er, Han (b0185) 2015; 45
Kim, Kim, Oh, Kim (b0085) 2017; 12
Lin, Lee (b0125) 1996
Soltani, Telmoudi, Chaouech, Ali, Chaari (b9000) 2019; 23
Kim, E.-H., Oh, S.-K., & Pedrycz, W. (2017c). Design of reinforced interval type-2 fuzzy c-means-based fuzzy classifier.
Demšar (b0040) 2006; 7
Pal, Bezdek (b0140) 1995; 3
Li, Zhou, Xiang, Li, An (b0115) 2009; 22
Bezdek (b0020) 2013
Li, Yuan, Ruan, Chen, Luo (b0120) 2021; 427
Taherdoost (b0180) 2016; 5
Askari (b0005) 2021; 165
Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016).
Hathaway, Bezdek, Hu (b0065) 2000; 8
Kim, Oh, Pedrycz (b0090) 2017; 119
Hathaway, Bezdek (b0060) 1993; 1
Roh, Oh, Pedrycz (b0165) 2010; 23
He, Dong (b0070) 2017; 29
Oh, Kim, Pedrycz (b0135) 2016; 45
Fushiki (10.1016/j.eswa.2023.119655_b0050) 2011; 21
Huang (10.1016/j.eswa.2023.119655_b0075) 2021; 458
Lin (10.1016/j.eswa.2023.119655_b0125) 1996
Dunn (10.1016/j.eswa.2023.119655_b0045) 1974; 4
Yeh (10.1016/j.eswa.2023.119655_b0195) 2016; 47
Pal (10.1016/j.eswa.2023.119655_b0145) 2005; 13
Askari (10.1016/j.eswa.2023.119655_b0010) 2020; 161
Kim (10.1016/j.eswa.2023.119655_b0085) 2017; 12
10.1016/j.eswa.2023.119655_b0220
Bezdek (10.1016/j.eswa.2023.119655_b0020) 2013
Yu (10.1016/j.eswa.2023.119655_b0200) 2013; 278–280
Kim (10.1016/j.eswa.2023.119655_b0090) 2017; 119
Zhou (10.1016/j.eswa.2023.119655_b0215) 2021; 213
Neville (10.1016/j.eswa.2023.119655_b0130) 2012
Askari (10.1016/j.eswa.2023.119655_b0005) 2021; 165
Pramod (10.1016/j.eswa.2023.119655_b0155) 2021; 215
He (10.1016/j.eswa.2023.119655_b0070) 2017; 29
Güler Dincer (10.1016/j.eswa.2023.119655_b0055) 2018; 20
Izakian (10.1016/j.eswa.2023.119655_b0080) 2011; 38
Li (10.1016/j.eswa.2023.119655_b0115) 2009; 22
Li (10.1016/j.eswa.2023.119655_b0120) 2021; 427
Qian (10.1016/j.eswa.2023.119655_b0160) 2021; 186
Soltani (10.1016/j.eswa.2023.119655_b0175) 2012; 22
Celik (10.1016/j.eswa.2023.119655_b0030) 2012; 22
10.1016/j.eswa.2023.119655_b0190
Parker (10.1016/j.eswa.2023.119655_b0150) 2013; 22
Roh (10.1016/j.eswa.2023.119655_b0165) 2010; 23
Shi (10.1016/j.eswa.2023.119655_b0170) 2020; 191
10.1016/j.eswa.2023.119655_b0095
Bezdek (10.1016/j.eswa.2023.119655_b0015) 1984; 10
Kung (10.1016/j.eswa.2023.119655_b0105) 2007; 1
Hathaway (10.1016/j.eswa.2023.119655_b0060) 1993; 1
Hathaway (10.1016/j.eswa.2023.119655_b0065) 2000; 8
Oh (10.1016/j.eswa.2023.119655_b0135) 2016; 45
Chen (10.1016/j.eswa.2023.119655_b0035) 2016; 47
Pal (10.1016/j.eswa.2023.119655_b0140) 1995; 3
Taherdoost (10.1016/j.eswa.2023.119655_b0180) 2016; 5
Kim (10.1016/j.eswa.2023.119655_b0100) 2018; 104
Soltani (10.1016/j.eswa.2023.119655_b9000) 2019; 23
Demšar (10.1016/j.eswa.2023.119655_b0040) 2006; 7
Campos Souza (10.1016/j.eswa.2023.119655_b0025) 2020; 92
Leski (10.1016/j.eswa.2023.119655_b0110) 2015; 279
Wang (10.1016/j.eswa.2023.119655_b0185) 2015; 45
Zarandi (10.1016/j.eswa.2023.119655_b0205) 2012; 187
Zhang (10.1016/j.eswa.2023.119655_b0210) 2021; 112
References_xml – reference: Edition, Morgan Kaufmann. https://doi.org/10.1016/C2009-0-19715-5.
– volume: 8
  start-page: 576
  year: 2000
  end-page: 582
  ident: b0065
  article-title: Generalized fuzzy c-means clustering strategies using L/sub p/norm distances
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 22
  start-page: 646
  year: 2009
  end-page: 653
  ident: b0115
  article-title: T-S fuzzy model identification based on a novel fuzzy c-regression model clustering algorithm
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 45
  start-page: 434
  year: 2016
  end-page: 454
  ident: b0135
  article-title: Design of radial basis function neural network classifier realized with the aid of data preprocessing techniques: Design and analysis
  publication-title: International Journal of General Systems
– volume: 23
  start-page: 202
  year: 2010
  end-page: 219
  ident: b0165
  article-title: A fuzzy ensemble of parallel polynomial neural networks with information granules formed by fuzzy clustering
  publication-title: Knowledge-Based Systems
– volume: 92
  year: 2020
  ident: b0025
  article-title: Fuzzy neural networks and neuro-fuzzy networks: A review the main techniques and applications used in the literature
  publication-title: Applied Soft Computing
– volume: 23
  start-page: 6125
  year: 2019
  end-page: 6134
  ident: b9000
  article-title: Design of a robust interval-valued type-2 fuzzy c-regression model for a nonlinear system with noise and outliers
  publication-title: Soft Computing
– volume: 20
  start-page: 1872
  year: 2018
  end-page: 1887
  ident: b0055
  article-title: A new fuzzy time series model based on fuzzy C-regression model
  publication-title: International Journal of Fuzzy Systems
– reference: . 4
– volume: 186
  year: 2021
  ident: b0160
  article-title: A novel structural adaptive discrete grey prediction model and its application in forecasting renewable energy generation
  publication-title: Expert Systems with Applications
– year: 2013
  ident: b0020
  article-title: Pattern recognition with fuzzy objective function algorithms
  publication-title: Springer Science & Business Media New York
– volume: 22
  start-page: 617
  year: 2012
  end-page: 628
  ident: b0175
  article-title: A novel fuzzy c-regression model algorithm using a new error measure and particle swarm optimization
  publication-title: International Journal of Applied Mathematics and Computer Science
– volume: 278–280
  start-page: 1323
  year: 2013
  end-page: 1326
  ident: b0200
  article-title: Fuzzy c-regression models
  publication-title: Applied Mechanics and Materials
– volume: 47
  start-page: 2343
  year: 2016
  end-page: 2352
  ident: b0195
  article-title: Efficient approach for RLS type learning in TSK neural fuzzy systems
  publication-title: IEEE Transactions on Cybernetics
– year: 2012
  ident: b0130
  article-title: Properties of Concrete
– reference: (3), 1104-1113. https://doi.org/ 10.1109/TFUZZ.2017.2704542.
– reference: (5), https://doi.org/3054-3068. 10.1109/TFUZZ.2017.2785244.
– volume: 4
  start-page: 1
  year: 1974
  end-page: 15
  ident: b0045
  article-title: Some recent investigations of a new fuzzy partitioning algorithm and its application to pattern classification problems
  publication-title: Journal of Cybernetics
– volume: 10
  start-page: 191
  year: 1984
  end-page: 203
  ident: b0015
  article-title: FCM: The fuzzy c-means clustering algorithm
  publication-title: Computers & Geosciences
– volume: 112
  year: 2021
  ident: b0210
  article-title: Building fuzzy relationships between compressive strength and 3D microstructural image features for cement hydration using Gaussian mixture model-based polynomial radial basis function neural networks
  publication-title: Applied Soft Computing
– reference: Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016).
– reference: Zou, W., Li, C., & Zhang, N. (2017). A T-S fuzzy model identification approach based on a modified inter type-2 FRCM algorithm.
– volume: 21
  start-page: 137
  year: 2011
  end-page: 146
  ident: b0050
  article-title: Estimation of prediction error by using K-fold cross-validation
  publication-title: Statistics and Computing
– volume: 191
  year: 2020
  ident: b0170
  article-title: A fuzzy c-means algorithm based on the relationship among attributes of data and its application in tunnel boring machine
  publication-title: Knowledge-Based Systems
– volume: 427
  start-page: 29
  year: 2021
  end-page: 39
  ident: b0120
  article-title: A proportional-integral-derivative-incorporated stochastic gradient-based latent factor analysis model
  publication-title: Neurocomputing
– reference: ,
– volume: 5
  start-page: 18
  year: 2016
  end-page: 27
  ident: b0180
  article-title: Sampling methods in research methodology; how to choose a sampling technique for research
  publication-title: International Journal of Academic Research in Management
– volume: 3
  start-page: 370
  year: 1995
  end-page: 379
  ident: b0140
  article-title: On cluster validity for the fuzzy c-means model
  publication-title: IEEE Transactions on Fuzzy systems
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: b0040
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: The Journal of Machine Learning Research
– volume: 29
  start-page: 1174
  year: 2017
  end-page: 1186
  ident: b0070
  article-title: Adaptive fuzzy neural network control for a constrained robot using impedance learning
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 458
  start-page: 454
  year: 2021
  end-page: 467
  ident: b0075
  article-title: Fuzzy reinforced polynomial neural networks constructed with the aid of PNN architecture and fuzzy hybrid predictor based on nonlinear function
  publication-title: Neurocomputing
– volume: 119
  start-page: 44
  year: 2017
  end-page: 58
  ident: b0090
  article-title: Reinforced rule-based fuzzy models: Design and analysis
  publication-title: Knowledge-Based Systems
– volume: 1
  start-page: 1255
  year: 2007
  end-page: 1265
  ident: b0105
  article-title: Affine Takagi-Sugeno fuzzy modelling algorithm by fuzzy c-regression models clustering with a novel cluster validity criterion
  publication-title: IET Control Theory & Applications
– volume: 13
  start-page: 517
  year: 2005
  end-page: 530
  ident: b0145
  article-title: A possibilistic fuzzy c-means clustering algorithm
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 45
  start-page: 2732
  year: 2015
  end-page: 2743
  ident: b0185
  article-title: Large tanker motion model identification using generalized ellipsoidal basis function-based fuzzy neural networks
  publication-title: IEEE Transactions on Cybernetics
– volume: 12
  start-page: 2388
  year: 2017
  end-page: 2398
  ident: b0085
  article-title: Design of robust face recognition system realized with the aid of automatic pose estimation-based classification and preprocessing networks structure
  publication-title: Journal of Electrical Engineering and Technology
– reference: Kim, E.-H., Oh, S.-K., & Pedrycz, W. (2017c). Design of reinforced interval type-2 fuzzy c-means-based fuzzy classifier.
– volume: 22
  start-page: 1258
  year: 2012
  end-page: 1261
  ident: b0030
  article-title: Comments on “A robust fuzzy local information c-means clustering algorithm”
  publication-title: IEEE Transactions on Image Processing
– volume: 22
  start-page: 1229
  year: 2013
  end-page: 1244
  ident: b0150
  article-title: Accelerating fuzzy-c means using an estimated subsample size
  publication-title: IEEE Transactions on Fuzzy Systems
– year: 1996
  ident: b0125
  article-title: Neural fuzzy systems: A neuro-fuzzy synergism to intelligent systems
– volume: 47
  start-page: 2448
  year: 2016
  end-page: 2459
  ident: b0035
  article-title: Asymptotic fuzzy neural network control for pure-feedback stochastic systems based on a semi-Nussbaum function technique
  publication-title: IEEE Transactions on Cybernetics
– volume: 161
  year: 2020
  ident: b0010
  article-title: Heap-based optimizer inspired by corporate rank hierarchy for global optimization
  publication-title: Expert Systems with Applications
– volume: 104
  start-page: 1
  year: 2018
  end-page: 14
  ident: b0100
  article-title: Design of double fuzzy clustering-driven context neural networks
  publication-title: Neural Networks
– volume: 165
  year: 2021
  ident: b0005
  article-title: Fuzzy C-Means clustering algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development
  publication-title: Expert Systems with Applications
– volume: 38
  start-page: 1835
  year: 2011
  end-page: 1838
  ident: b0080
  article-title: Fuzzy C-means and fuzzy swarm for fuzzy clustering problem
  publication-title: Expert Systems with Applications
– volume: 187
  start-page: 179
  year: 2012
  end-page: 203
  ident: b0205
  article-title: A type-2 fuzzy c-regression clustering algorithm for Takagi-Sugeno system identification and its application in the steel industry
  publication-title: Information Sciences
– volume: 215
  year: 2021
  ident: b0155
  article-title: K-Means clustering based Extreme Learning ANFIS with improved interpretability for regression problems
  publication-title: Knowledge-Based Systems
– volume: 1
  start-page: 195
  year: 1993
  end-page: 204
  ident: b0060
  article-title: Switching regression models and fuzzy clustering
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 279
  start-page: 112
  year: 2015
  end-page: 129
  ident: b0110
  article-title: On robust fuzzy c-regression models
  publication-title: Fuzzy Sets and Systems
– volume: 213
  year: 2021
  ident: b0215
  article-title: Comparative study on the time series forecasting of web traffic based on statistical model and Generative Adversarial model
  publication-title: Knowledge-Based Systems
– volume: 119
  start-page: 44
  year: 2017
  ident: 10.1016/j.eswa.2023.119655_b0090
  article-title: Reinforced rule-based fuzzy models: Design and analysis
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2016.12.003
– volume: 213
  year: 2021
  ident: 10.1016/j.eswa.2023.119655_b0215
  article-title: Comparative study on the time series forecasting of web traffic based on statistical model and Generative Adversarial model
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.106467
– volume: 278–280
  start-page: 1323
  year: 2013
  ident: 10.1016/j.eswa.2023.119655_b0200
  article-title: Fuzzy c-regression models
  publication-title: Applied Mechanics and Materials
  doi: 10.4028/www.scientific.net/AMM.278-280.1323
– volume: 92
  year: 2020
  ident: 10.1016/j.eswa.2023.119655_b0025
  article-title: Fuzzy neural networks and neuro-fuzzy networks: A review the main techniques and applications used in the literature
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106275
– volume: 191
  year: 2020
  ident: 10.1016/j.eswa.2023.119655_b0170
  article-title: A fuzzy c-means algorithm based on the relationship among attributes of data and its application in tunnel boring machine
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.105229
– volume: 10
  start-page: 191
  issue: 2–3
  year: 1984
  ident: 10.1016/j.eswa.2023.119655_b0015
  article-title: FCM: The fuzzy c-means clustering algorithm
  publication-title: Computers & Geosciences
  doi: 10.1016/0098-3004(84)90020-7
– volume: 187
  start-page: 179
  year: 2012
  ident: 10.1016/j.eswa.2023.119655_b0205
  article-title: A type-2 fuzzy c-regression clustering algorithm for Takagi-Sugeno system identification and its application in the steel industry
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2011.10.015
– volume: 186
  year: 2021
  ident: 10.1016/j.eswa.2023.119655_b0160
  article-title: A novel structural adaptive discrete grey prediction model and its application in forecasting renewable energy generation
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.115761
– volume: 1
  start-page: 1255
  issue: 5
  year: 2007
  ident: 10.1016/j.eswa.2023.119655_b0105
  article-title: Affine Takagi-Sugeno fuzzy modelling algorithm by fuzzy c-regression models clustering with a novel cluster validity criterion
  publication-title: IET Control Theory & Applications
  doi: 10.1049/iet-cta:20060415
– ident: 10.1016/j.eswa.2023.119655_b0095
  doi: 10.1109/TFUZZ.2017.2785244
– year: 2012
  ident: 10.1016/j.eswa.2023.119655_b0130
– volume: 112
  year: 2021
  ident: 10.1016/j.eswa.2023.119655_b0210
  article-title: Building fuzzy relationships between compressive strength and 3D microstructural image features for cement hydration using Gaussian mixture model-based polynomial radial basis function neural networks
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2021.107766
– year: 1996
  ident: 10.1016/j.eswa.2023.119655_b0125
– volume: 22
  start-page: 617
  issue: 3
  year: 2012
  ident: 10.1016/j.eswa.2023.119655_b0175
  article-title: A novel fuzzy c-regression model algorithm using a new error measure and particle swarm optimization
  publication-title: International Journal of Applied Mathematics and Computer Science
  doi: 10.2478/v10006-012-0047-0
– ident: 10.1016/j.eswa.2023.119655_b0220
  doi: 10.1109/TFUZZ.2017.2704542
– volume: 5
  start-page: 18
  issue: 2
  year: 2016
  ident: 10.1016/j.eswa.2023.119655_b0180
  article-title: Sampling methods in research methodology; how to choose a sampling technique for research
  publication-title: International Journal of Academic Research in Management
– year: 2013
  ident: 10.1016/j.eswa.2023.119655_b0020
  article-title: Pattern recognition with fuzzy objective function algorithms
  publication-title: Springer Science & Business Media New York
– volume: 165
  year: 2021
  ident: 10.1016/j.eswa.2023.119655_b0005
  article-title: Fuzzy C-Means clustering algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113856
– volume: 45
  start-page: 434
  issue: 4
  year: 2016
  ident: 10.1016/j.eswa.2023.119655_b0135
  article-title: Design of radial basis function neural network classifier realized with the aid of data preprocessing techniques: Design and analysis
  publication-title: International Journal of General Systems
  doi: 10.1080/03081079.2015.1072523
– volume: 47
  start-page: 2448
  issue: 9
  year: 2016
  ident: 10.1016/j.eswa.2023.119655_b0035
  article-title: Asymptotic fuzzy neural network control for pure-feedback stochastic systems based on a semi-Nussbaum function technique
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2016.2628182
– volume: 427
  start-page: 29
  year: 2021
  ident: 10.1016/j.eswa.2023.119655_b0120
  article-title: A proportional-integral-derivative-incorporated stochastic gradient-based latent factor analysis model
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.11.029
– volume: 22
  start-page: 1229
  issue: 5
  year: 2013
  ident: 10.1016/j.eswa.2023.119655_b0150
  article-title: Accelerating fuzzy-c means using an estimated subsample size
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2013.2286993
– volume: 3
  start-page: 370
  issue: 3
  year: 1995
  ident: 10.1016/j.eswa.2023.119655_b0140
  article-title: On cluster validity for the fuzzy c-means model
  publication-title: IEEE Transactions on Fuzzy systems
  doi: 10.1109/91.413225
– volume: 22
  start-page: 1258
  issue: 3
  year: 2012
  ident: 10.1016/j.eswa.2023.119655_b0030
  article-title: Comments on “A robust fuzzy local information c-means clustering algorithm”
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2012.2226048
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.eswa.2023.119655_b0040
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: The Journal of Machine Learning Research
– volume: 47
  start-page: 2343
  issue: 9
  year: 2016
  ident: 10.1016/j.eswa.2023.119655_b0195
  article-title: Efficient approach for RLS type learning in TSK neural fuzzy systems
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2016.2638861
– volume: 21
  start-page: 137
  issue: 2
  year: 2011
  ident: 10.1016/j.eswa.2023.119655_b0050
  article-title: Estimation of prediction error by using K-fold cross-validation
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-009-9153-8
– volume: 23
  start-page: 6125
  issue: 15
  year: 2019
  ident: 10.1016/j.eswa.2023.119655_b9000
  article-title: Design of a robust interval-valued type-2 fuzzy c-regression model for a nonlinear system with noise and outliers
  publication-title: Soft Computing
  doi: 10.1007/s00500-018-3265-z
– volume: 8
  start-page: 576
  issue: 5
  year: 2000
  ident: 10.1016/j.eswa.2023.119655_b0065
  article-title: Generalized fuzzy c-means clustering strategies using L/sub p/norm distances
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/91.873580
– volume: 1
  start-page: 195
  issue: 3
  year: 1993
  ident: 10.1016/j.eswa.2023.119655_b0060
  article-title: Switching regression models and fuzzy clustering
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/91.236552
– volume: 161
  year: 2020
  ident: 10.1016/j.eswa.2023.119655_b0010
  article-title: Heap-based optimizer inspired by corporate rank hierarchy for global optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113702
– volume: 13
  start-page: 517
  issue: 4
  year: 2005
  ident: 10.1016/j.eswa.2023.119655_b0145
  article-title: A possibilistic fuzzy c-means clustering algorithm
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2004.840099
– ident: 10.1016/j.eswa.2023.119655_b0190
  doi: 10.1016/C2009-0-19715-5
– volume: 279
  start-page: 112
  year: 2015
  ident: 10.1016/j.eswa.2023.119655_b0110
  article-title: On robust fuzzy c-regression models
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2014.12.004
– volume: 22
  start-page: 646
  issue: 4–5
  year: 2009
  ident: 10.1016/j.eswa.2023.119655_b0115
  article-title: T-S fuzzy model identification based on a novel fuzzy c-regression model clustering algorithm
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2009.02.003
– volume: 12
  start-page: 2388
  issue: 6
  year: 2017
  ident: 10.1016/j.eswa.2023.119655_b0085
  article-title: Design of robust face recognition system realized with the aid of automatic pose estimation-based classification and preprocessing networks structure
  publication-title: Journal of Electrical Engineering and Technology
– volume: 20
  start-page: 1872
  issue: 6
  year: 2018
  ident: 10.1016/j.eswa.2023.119655_b0055
  article-title: A new fuzzy time series model based on fuzzy C-regression model
  publication-title: International Journal of Fuzzy Systems
  doi: 10.1007/s40815-018-0497-0
– volume: 104
  start-page: 1
  year: 2018
  ident: 10.1016/j.eswa.2023.119655_b0100
  article-title: Design of double fuzzy clustering-driven context neural networks
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2018.03.018
– volume: 458
  start-page: 454
  year: 2021
  ident: 10.1016/j.eswa.2023.119655_b0075
  article-title: Fuzzy reinforced polynomial neural networks constructed with the aid of PNN architecture and fuzzy hybrid predictor based on nonlinear function
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.06.047
– volume: 45
  start-page: 2732
  issue: 12
  year: 2015
  ident: 10.1016/j.eswa.2023.119655_b0185
  article-title: Large tanker motion model identification using generalized ellipsoidal basis function-based fuzzy neural networks
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2014.2382679
– volume: 4
  start-page: 1
  issue: 2
  year: 1974
  ident: 10.1016/j.eswa.2023.119655_b0045
  article-title: Some recent investigations of a new fuzzy partitioning algorithm and its application to pattern classification problems
  publication-title: Journal of Cybernetics
  doi: 10.1080/01969727408546062
– volume: 215
  year: 2021
  ident: 10.1016/j.eswa.2023.119655_b0155
  article-title: K-Means clustering based Extreme Learning ANFIS with improved interpretability for regression problems
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.106750
– volume: 23
  start-page: 202
  issue: 3
  year: 2010
  ident: 10.1016/j.eswa.2023.119655_b0165
  article-title: A fuzzy ensemble of parallel polynomial neural networks with information granules formed by fuzzy clustering
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2009.12.002
– volume: 29
  start-page: 1174
  issue: 4
  year: 2017
  ident: 10.1016/j.eswa.2023.119655_b0070
  article-title: Adaptive fuzzy neural network control for a constrained robot using impedance learning
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2017.2665581
– volume: 38
  start-page: 1835
  issue: 3
  year: 2011
  ident: 10.1016/j.eswa.2023.119655_b0080
  article-title: Fuzzy C-means and fuzzy swarm for fuzzy clustering problem
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.07.112
SSID ssj0017007
Score 2.4392498
Snippet In this study, we introduce novel fuzzy neural networks designed with the aid of linear function prototype-driven fuzzy clustering (LFPFC) and layer...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 119655
SubjectTerms Distance-based LFPFC
Estimated output-based LFPFC
Fuzzy c-regression model (FCRM) clustering
Layer reconstruction-based network design strategy
Linear function prototype-driven fuzzy clustering (LFPFC)
Title Rule-based fuzzy neural networks realized with the aid of linear function Prototype-driven fuzzy clustering and layer Reconstruction-based network design strategy
URI https://dx.doi.org/10.1016/j.eswa.2023.119655
Volume 219
WOSCitedRecordID wos000946050100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZWWw5ceCPKSz5wi4yyeTrHgopKi6qKFthb5NgObRWSKrvpY38Ov4Sfxjhjb5alqgCJS7SKEjvy9-3483hmTMgrUBCiDHXMAlHAAqWIIiZEGTEVh0mSxSA4-pPnPn9I9_f5dJodjEY_XC7MeZXWNb-8zM7-K9RwD8A2qbN_AfeyUbgBvwF0uALscP0j4D92lWZmclJe2S0WV54pWQlA1BjwbbYJQHsvXNi5EZ7iRBnRaBSnaD0z1fWsOGibeWN8tEy1xija9mTVmeoKLruxEqDajfxshmK0tn_bpaf6MBFvhpVwf9lI7kstz21BaZdqt7KpPmxxYUz3oai_sjcax633Dh9jcBHc3rvoVmIKvmEeT812usH-q_ZK9i7zL2DJsFSs83kE4RCbhY44l4wzRD6hRzNlQC30T2i05zwNWZLiIYzO4Fsj_dvkgX6M09d6dmEqUgUhzCdZglWE14pyH5rOTF-wgjPJ6CACNoI0zviYbGy9357uLneyUh9T9t3H2cQtjDFc7-l6cbQieI7ukTt2pUK3kGH3yUjXD8hddwoItZPCQ_J9IBztCUKRcNQRjjrCUYMuBcJRIBxtSoqEo45wdJ1wtr2BcBQIR3vC0esI57qkSDjqCPeIfHq3ffR2h9mTP5iE8ZwDYhOpZBHoKJIqFkEZKp2UMedgVmBJH04KrhIufSUjP5STJFU-zyJZ6EzxIuI6fEzGdVPrJ4RGAiRoLCQ8r6AxKYI40v5El2mZybD0N8nEDXkubVl8czpLlbv4x9PcwJQbmHKEaZN4y3fOsCjMjU_HDsncylqUqzkQ74b3nv7je8_I7eE_85yMAQn9gtyS5_OTWfvS8vMnRKDTag
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rule-based+fuzzy+neural+networks+realized+with+the+aid+of+linear+function+Prototype-driven+fuzzy+clustering+and+layer+Reconstruction-based+network+design+strategy&rft.jtitle=Expert+systems+with+applications&rft.au=Park%2C+Sang-Beom&rft.au=Oh%2C+Sung-Kwun&rft.au=Kim%2C+Eun-Hu&rft.au=Pedrycz%2C+Witold&rft.date=2023-06-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=219&rft_id=info:doi/10.1016%2Fj.eswa.2023.119655&rft.externalDocID=S0957417423001562
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon