An ensemble method for investigating maritime casualties resulting in pollution occurrence: Data augmentation and feature analysis

•Prediction of maritime casualties resulting in pollution occurrence powered by AI technology.•Employment of VAE based data augmentation to address data imbalance challenge.•Utilization of up-to-date maritime casualty data with various pollution sources.•Analysis of contributing features and their d...

Full description

Saved in:
Bibliographic Details
Published in:Reliability engineering & system safety Vol. 251; p. 110391
Main Authors: Li, Duowei, Wong, Yiik Diew, Chen, Tianyi, Wang, Nanxi, Yuen, Kum Fai
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.11.2024
Subjects:
ISSN:0951-8320
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Prediction of maritime casualties resulting in pollution occurrence powered by AI technology.•Employment of VAE based data augmentation to address data imbalance challenge.•Utilization of up-to-date maritime casualty data with various pollution sources.•Analysis of contributing features and their dependences on pollution occurrence.•Discussion of practical insights for precautionary measures and policy development. Timely prediction of maritime casualties resulting in pollution occurrence remains unsolved in academia, as the significant data imbalance between non-polluting and polluting casualties poses a challenge to prediction efficacy. This study proposes an ensemble method for predicting polluting maritime casualties and exploring the contributing features to pollution. In the data preprocessing phase, key features related to casualties and vessels are extracted and encoded into model variables; in the data augmentation phase, Variational Autoencoder is employed to generate synthetic samples from the minor class, effectively mitigating the impact from data imbalance; and in the pollution indicator classification phase, machine learning models are trained on the balanced dataset to label a casualty as “polluting” or “non-polluting”. A dataset containing 25,414 worldwide maritime casualties from 2013 to 2023 is utilized for method validation. Several state-of-the-art data balancing techniques serve as baselines for comparison with the VAE on the quality of generated synthetic data. The model trained on the VAE dataset achieves the most satisfactory performances, demonstrating the superiority of VAE in augmenting data quantity and diversity. “Casualty cause”, “Vessel age” and “Vessel type” are revealed as the top three contributing features to pollution. Several insights are discussed for precautionary measures and policy development.
AbstractList •Prediction of maritime casualties resulting in pollution occurrence powered by AI technology.•Employment of VAE based data augmentation to address data imbalance challenge.•Utilization of up-to-date maritime casualty data with various pollution sources.•Analysis of contributing features and their dependences on pollution occurrence.•Discussion of practical insights for precautionary measures and policy development. Timely prediction of maritime casualties resulting in pollution occurrence remains unsolved in academia, as the significant data imbalance between non-polluting and polluting casualties poses a challenge to prediction efficacy. This study proposes an ensemble method for predicting polluting maritime casualties and exploring the contributing features to pollution. In the data preprocessing phase, key features related to casualties and vessels are extracted and encoded into model variables; in the data augmentation phase, Variational Autoencoder is employed to generate synthetic samples from the minor class, effectively mitigating the impact from data imbalance; and in the pollution indicator classification phase, machine learning models are trained on the balanced dataset to label a casualty as “polluting” or “non-polluting”. A dataset containing 25,414 worldwide maritime casualties from 2013 to 2023 is utilized for method validation. Several state-of-the-art data balancing techniques serve as baselines for comparison with the VAE on the quality of generated synthetic data. The model trained on the VAE dataset achieves the most satisfactory performances, demonstrating the superiority of VAE in augmenting data quantity and diversity. “Casualty cause”, “Vessel age” and “Vessel type” are revealed as the top three contributing features to pollution. Several insights are discussed for precautionary measures and policy development.
ArticleNumber 110391
Author Yuen, Kum Fai
Chen, Tianyi
Wong, Yiik Diew
Li, Duowei
Wang, Nanxi
Author_xml – sequence: 1
  givenname: Duowei
  orcidid: 0000-0002-1940-2435
  surname: Li
  fullname: Li, Duowei
  organization: School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
– sequence: 2
  givenname: Yiik Diew
  orcidid: 0000-0001-7419-5777
  surname: Wong
  fullname: Wong, Yiik Diew
  organization: School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
– sequence: 3
  givenname: Tianyi
  surname: Chen
  fullname: Chen, Tianyi
  organization: School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
– sequence: 4
  givenname: Nanxi
  surname: Wang
  fullname: Wang, Nanxi
  organization: School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
– sequence: 5
  givenname: Kum Fai
  orcidid: 0000-0002-9199-6661
  surname: Yuen
  fullname: Yuen, Kum Fai
  email: kumfai.yuen@ntu.edu.sg
  organization: School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
BookMark eNp9kLtuwzAMRTWkQJO0P9BJP-CUsuVX0SVIn0CALu0s0AqdKrDlQJIDZO2X1046dchEAsS5JM-MTWxnibE7AQsBIrvfLRx5v4ghlgshICnFhE2hTEVUJDFcs5n3OwCQZZpP2c_ScrKe2qoh3lL47ja87hw39kA-mC0GY7e8RWeCaYlr9D02wZDnw5K-OU2N5fuuafpgOss7rXvnyGp64E8YkGO_bckGPE3RDvGEoXc09NgcvfE37KrGxtPtX52zr5fnz9VbtP54fV8t15FOAEKUSl3IqqprTAvAOCFdJjKviiItcgLIZI0iAwKRYC5LLaGGLKt0UqSVTElUyZwV51ztOu8d1Uqb81nBoWmUADX6Uzs1-lOjP3X2N6DxP3TvzCDleBl6PEM0PHUw5JTXZhSzMY50UJvOXMJ_AfXZkXk
CitedBy_id crossref_primary_10_1016_j_engappai_2025_110959
crossref_primary_10_1016_j_ress_2025_110845
crossref_primary_10_1016_j_ress_2025_111659
crossref_primary_10_3390_su16188246
Cites_doi 10.1016/j.aap.2021.106511
10.1002/aic.690370209
10.1109/ACCESS.2020.3034828
10.1007/978-3-319-60801-3_27
10.1016/j.marpolbul.2011.08.026
10.1016/j.ress.2023.109925
10.17148/IARJSET.2015.2305
10.1016/j.aap.2020.105950
10.1109/WACV48630.2021.00081
10.1016/j.ress.2023.109360
10.1016/j.ress.2022.108938
10.3233/JIFS-162155
10.1613/jair.953
10.1016/j.trc.2020.102697
10.1023/B:STCO.0000035301.49549.88
10.3390/info14010054
10.1017/S0962492900000015
10.1016/j.trd.2023.103731
10.3390/app11020471
10.1016/j.ress.2022.108893
10.1007/s40095-016-0211-7
10.24138/jcomss-2021-0035
10.1109/TITS.2022.3140586
10.1093/bioinformatics/btq134
10.1016/j.marpolbul.2023.115606
10.1109/TKDE.2008.239
10.1016/S1361-9209(01)00002-5
10.1016/j.jclepro.2022.134266
10.1073/pnas.1903070116
10.1016/j.aap.2022.106933
10.1002/widm.8
10.1016/j.marpolbul.2021.112724
10.1002/gamm.202100008
10.1007/s13748-016-0094-0
10.1016/j.aap.2020.105658
10.1103/PhysRevE.96.022140
10.1016/j.trd.2020.102662
10.1016/j.ress.2023.109832
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ress.2024.110391
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_ress_2024_110391
S0951832024004630
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-54c84bbffa580a23ec9347b88587e0064fa160e013a749c40f066bc385b45e1b3
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001288638600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0951-8320
IngestDate Sat Nov 29 01:50:08 EST 2025
Tue Nov 18 21:16:50 EST 2025
Sat Aug 17 15:42:52 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Maritime casualty
Variational autoencoder (VAE)
Data augmentation
Maritime pollution
Pollution prediction
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-54c84bbffa580a23ec9347b88587e0064fa160e013a749c40f066bc385b45e1b3
ORCID 0000-0002-9199-6661
0000-0002-1940-2435
0000-0001-7419-5777
ParticipantIDs crossref_citationtrail_10_1016_j_ress_2024_110391
crossref_primary_10_1016_j_ress_2024_110391
elsevier_sciencedirect_doi_10_1016_j_ress_2024_110391
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationTitle Reliability engineering & system safety
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Abdel-Aty, Cai, Yuan (bib0037) 2020; 144
Higgins, Matthey, Pal, Burgess, Glorot, Botvinick, Mohamed, Lerchner (bib0024) 2016
Altmann, Toloşi, Sander, Lengauer (bib0001) 2010; 26
Tian, Jiang, Zhang, Luo, Yin (bib0055) 2024; 243
Ha, Lee (bib0019) 2016
Wetzel (bib0060) 2017; 96
Langella, Iodice, Amoresano, Senatore (bib0035) 2016; 7
Asperti, Trentin (bib0004) 2020; 8
Spooner, Palade, Cheah, Kanarachos, Daneshkhah (bib0050) 2021; 11
Laine, Goerlandt, Banda, Baldauf, Koldenhof, Rytkönen (bib0033) 2021; 171
Lan, Ma, Ma, Qiao (bib0034) 2023; 229
Doersch, C., 2021. Tutorial on variational autoencoders.
Cakir, Sevgili, Fiskin (bib0011) 2021; 90
Kim, Kang, Ahn, Shin (bib0028) 2021
Sun, Peng, Yu, Li (bib0051) 2023; 237
He, Bai, Garcia, Li (bib0021) 2008
Arjovsky, M., Bottou, L., 2017. Towards principled methods for training generative adversarial networks.
Häkkinen, Posti (bib0020) 2014; 8
Chen, Chen, Shi, Yan, Gu, Huang (bib0013) 2023; 196
Patro, S.G.K., Sahu, K.K., 2015. Normalization: a Preprocessing Stage.
Brandt, J., Lanzén, E., 2021. A comparative review of SMOTE and ADASYN in imbalanced data classification.
.
Chen, Xu, Liu, Chen, Miao, Li, Hou, Wang (bib0014) 2022; 23
Lundberg, Lee (bib0041) 2017
Boy (bib0007) 2011
Kingma, Welling (bib0030) 2014
Wan, Yang, Chen, Qu, An, Zhang, Lee, Bi (bib0057) 2022; 376
Smola, Schölkopf (bib0048) 2004; 14
Krawczyk (bib0032) 2016; 5
Taud, Mas (bib0054) 2018
Zhou, Zhu, Song, Fan, Zhu, Ma, Yan, Jin, Li, Gai (bib0065) 2018
Buhmann (bib0009) 2000; 9
Talley (bib0052) 1996; 32
Ruthotto, Haber (bib0046) 2021; 44
Giziakis, Bardi-Giziaki (bib0018) 2002; 11
Wen, Sun, Yang, Song, Gao, Wang, Xu (bib0059) 2021
Yahaya, Jiang, Fu, Bashir, Fan (bib0062) 2019
Chawla, Bowyer, Hall, Kegelmeyer (bib0012) 2002; 16
Jöckel, Kläs, Martínez-Fernández (bib0027) 2019
Hershey, Olsen (bib0023) 2007
Man, Quddus, Theofilatos (bib0042) 2022; 165
Belkin, Hsu, Ma, Mandal (bib0006) 2019; 116
Loaiza-Ganem, Cunningham (bib0039) 2019
You, Wang, Fang, Guo (bib0064) 2017; 33
Daxberger, E., Hernández-Lobato, J.M., 2020. Bayesian variational autoencoders for unsupervised out-of-distribution detection.
Pawar, Attar (bib0045) 2020
Islam, Abdel-Aty, Cai, Yuan (bib0026) 2021; 151
Zhou, Xing, Wang, Li, Yang (bib0066) 2024; 244
Li, Ren, Yang (bib0036) 2023; 230
Cai, Abdel-Aty, Yuan, Lee, Wu (bib0010) 2020; 117
Talley, Jin, Kite-Powell (bib0053) 2001; 6
Wan, Zhang, He (bib0058) 2017
Loh (bib0040) 2011; 1
Marin, Gotovac, Russo, Božić-Štulić (bib0043) 2021; 17
Kingma, Welling (bib0029) 2019; 12
Wongvorachan, He, Bulut (bib0061) 2023; 14
Ashraf, Dey, Mishra (bib0003) 2023; 181
Seger, C., 2018. An investigation of categorical variable encoding techniques in machine learning: binary versus one-hot and feature hashing.
Li, Belford (bib0038) 2002
Kramer (bib0031) 1991; 37
Uricar, M., Sistu, G., Rashed, H., Vobecky, A., Kumar, V.R., Krizek, P., Burger, F., Yogamani, S., 2021. Let's get dirty: GAN based data augmentation for camera lens soiling detection in autonomous driving. Presented at the Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 766–75.
Yip, Talley, Jin (bib0063) 2011; 62
He, Garcia (bib0022) 2009; 21
Bekkar, Djemaa, Alitouche (bib0005) 2013; 3
Florkowski (bib0017) 2008; 29
Huntington, Olsen, Zdor, Zagorskiy, Shin, Romanenko, Kaltenborn, Dawson, Davies, Abou-Abbsi (bib0025) 2023; 118
SONG, LU (bib0049) 2015; 27
Pawar (10.1016/j.ress.2024.110391_bib0045) 2020
Wan (10.1016/j.ress.2024.110391_bib0057) 2022; 376
Lan (10.1016/j.ress.2024.110391_bib0034) 2023; 229
Langella (10.1016/j.ress.2024.110391_bib0035) 2016; 7
Wetzel (10.1016/j.ress.2024.110391_bib0060) 2017; 96
Smola (10.1016/j.ress.2024.110391_bib0048) 2004; 14
Krawczyk (10.1016/j.ress.2024.110391_bib0032) 2016; 5
Hershey (10.1016/j.ress.2024.110391_bib0023) 2007
Kim (10.1016/j.ress.2024.110391_bib0028) 2021
You (10.1016/j.ress.2024.110391_bib0064) 2017; 33
Huntington (10.1016/j.ress.2024.110391_bib0025) 2023; 118
Loaiza-Ganem (10.1016/j.ress.2024.110391_bib0039) 2019
Chen (10.1016/j.ress.2024.110391_bib0014) 2022; 23
Loh (10.1016/j.ress.2024.110391_bib0040) 2011; 1
Yip (10.1016/j.ress.2024.110391_bib0063) 2011; 62
Cakir (10.1016/j.ress.2024.110391_bib0011) 2021; 90
Florkowski (10.1016/j.ress.2024.110391_bib0017) 2008; 29
Ruthotto (10.1016/j.ress.2024.110391_bib0046) 2021; 44
Li (10.1016/j.ress.2024.110391_bib0036) 2023; 230
Kingma (10.1016/j.ress.2024.110391_bib0029) 2019; 12
Taud (10.1016/j.ress.2024.110391_bib0054) 2018
Wan (10.1016/j.ress.2024.110391_bib0058) 2017
Wen (10.1016/j.ress.2024.110391_bib0059) 2021
10.1016/j.ress.2024.110391_bib0044
Wongvorachan (10.1016/j.ress.2024.110391_bib0061) 2023; 14
Sun (10.1016/j.ress.2024.110391_bib0051) 2023; 237
Boy (10.1016/j.ress.2024.110391_bib0007) 2011
Giziakis (10.1016/j.ress.2024.110391_bib0018) 2002; 11
SONG (10.1016/j.ress.2024.110391_bib0049) 2015; 27
10.1016/j.ress.2024.110391_bib0002
10.1016/j.ress.2024.110391_bib0047
Talley (10.1016/j.ress.2024.110391_bib0052) 1996; 32
10.1016/j.ress.2024.110391_bib0008
Kingma (10.1016/j.ress.2024.110391_bib0030) 2014
Ashraf (10.1016/j.ress.2024.110391_bib0003) 2023; 181
Jöckel (10.1016/j.ress.2024.110391_bib0027) 2019
Bekkar (10.1016/j.ress.2024.110391_bib0005) 2013; 3
Tian (10.1016/j.ress.2024.110391_bib0055) 2024; 243
Talley (10.1016/j.ress.2024.110391_bib0053) 2001; 6
Asperti (10.1016/j.ress.2024.110391_bib0004) 2020; 8
Laine (10.1016/j.ress.2024.110391_bib0033) 2021; 171
Islam (10.1016/j.ress.2024.110391_bib0026) 2021; 151
Yahaya (10.1016/j.ress.2024.110391_bib0062) 2019
Buhmann (10.1016/j.ress.2024.110391_bib0009) 2000; 9
Kramer (10.1016/j.ress.2024.110391_bib0031) 1991; 37
Li (10.1016/j.ress.2024.110391_bib0037) 2020; 144
10.1016/j.ress.2024.110391_bib0056
Chen (10.1016/j.ress.2024.110391_bib0013) 2023; 196
Lundberg (10.1016/j.ress.2024.110391_bib0041) 2017
10.1016/j.ress.2024.110391_bib0015
10.1016/j.ress.2024.110391_bib0016
Häkkinen (10.1016/j.ress.2024.110391_bib0020) 2014; 8
Altmann (10.1016/j.ress.2024.110391_bib0001) 2010; 26
Chawla (10.1016/j.ress.2024.110391_bib0012) 2002; 16
Cai (10.1016/j.ress.2024.110391_bib0010) 2020; 117
Ha (10.1016/j.ress.2024.110391_bib0019) 2016
Higgins (10.1016/j.ress.2024.110391_bib0024) 2016
Man (10.1016/j.ress.2024.110391_bib0042) 2022; 165
He (10.1016/j.ress.2024.110391_bib0021) 2008
He (10.1016/j.ress.2024.110391_bib0022) 2009; 21
Li (10.1016/j.ress.2024.110391_bib0038) 2002
Zhou (10.1016/j.ress.2024.110391_bib0066) 2024; 244
Belkin (10.1016/j.ress.2024.110391_bib0006) 2019; 116
Spooner (10.1016/j.ress.2024.110391_bib0050) 2021; 11
Zhou (10.1016/j.ress.2024.110391_bib0065) 2018
Marin (10.1016/j.ress.2024.110391_bib0043) 2021; 17
References_xml – volume: 144
  year: 2020
  ident: bib0037
  article-title: The application of novel connected vehicles emulated data on real-time crash potential prediction for arterials
  publication-title: Accident Anal. Prev.
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: bib0012
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
– volume: 44
  year: 2021
  ident: bib0046
  article-title: An introduction to deep generative modeling
  publication-title: GAMM-Mitteilungen
– volume: 237
  year: 2023
  ident: bib0051
  article-title: Data augmentation strategy for power inverter fault diagnosis based on wasserstein distance and auxiliary classification generative adversarial network
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 1
  start-page: 14
  year: 2011
  end-page: 23
  ident: bib0040
  article-title: Classification and regression trees
  publication-title: WIREs Data Mining Knowl. Discov.
– volume: 12
  start-page: 307
  year: 2019
  end-page: 392
  ident: bib0029
  article-title: An introduction to variational autoencoders
  publication-title: MAL
– volume: 27
  start-page: 130
  year: 2015
  end-page: 135
  ident: bib0049
  article-title: Decision tree methods: applications for classification and prediction
  publication-title: Shanghai. Arch. Psychiatry
– volume: 229
  year: 2023
  ident: bib0034
  article-title: Pattern investigation of total loss maritime accidents based on association rule mining
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 62
  start-page: 2427
  year: 2011
  end-page: 2432
  ident: bib0063
  article-title: The effectiveness of double hulls in reducing vessel-accident oil spillage
  publication-title: Mar. Pollut. Bull.
– volume: 21
  start-page: 1263
  year: 2009
  end-page: 1284
  ident: bib0022
  article-title: Learning from imbalanced data
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 151
  year: 2021
  ident: bib0026
  article-title: Crash data augmentation using variational autoencoder
  publication-title: Accident Anal. Prev.
– volume: 14
  start-page: 54
  year: 2023
  ident: bib0061
  article-title: A comparison of undersampling, oversampling, and SMOTE methods for dealing with imbalanced classification in educational data mining
  publication-title: Information
– reference: Uricar, M., Sistu, G., Rashed, H., Vobecky, A., Kumar, V.R., Krizek, P., Burger, F., Yogamani, S., 2021. Let's get dirty: GAN based data augmentation for camera lens soiling detection in autonomous driving. Presented at the Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 766–75.
– start-page: 363
  year: 2019
  end-page: 368
  ident: bib0062
  article-title: Enhancing crash injury severity prediction on imbalanced crash data by sampling technique with variable selection
  publication-title: Presented at the 2019 IEEE Intelligent Transportation Systems Conference (ITSC)
– reference: Arjovsky, M., Bottou, L., 2017. Towards principled methods for training generative adversarial networks.
– volume: 117
  year: 2020
  ident: bib0010
  article-title: Real-time crash prediction on expressways using deep generative models
  publication-title: Trans. Res. Part C: Emerging Technol.
– start-page: 57
  year: 2011
  end-page: 75
  ident: bib0007
  article-title: The Development and meaning of vessel flags in the cruise industry
  publication-title: Cruise Sector Challenges: Making Progress in an Uncertain World
– start-page: 4653
  year: 2021
  end-page: 4660
  ident: bib0059
  article-title: Time series data augmentation for deep learning: a survey
  publication-title: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence
– volume: 118
  year: 2023
  ident: bib0025
  article-title: Effects of Arctic commercial shipping on environments and communities: context, governance, priorities
  publication-title: Trans. Res. Part D: Trans. Environ.
– volume: 243
  year: 2024
  ident: bib0055
  article-title: A novel data augmentation approach to fault diagnosis with class-imbalance problem
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 196
  year: 2023
  ident: bib0013
  article-title: Factor diagnosis and governance strategies of ship oil spill accidents based on formal concept analysis
  publication-title: Mar. Pollut. Bull.
– reference: Daxberger, E., Hernández-Lobato, J.M., 2020. Bayesian variational autoencoders for unsupervised out-of-distribution detection.
– start-page: 1
  year: 2017
  end-page: 7
  ident: bib0058
  article-title: Variational autoencoder based synthetic data generation for imbalanced learning
  publication-title: Presented at the 2017 IEEE Symposium Series on Computational Intelligence (SSCI)
– volume: 17
  start-page: 124
  year: 2021
  end-page: 133
  ident: bib0043
  article-title: The effect of latent space dimension on the quality of synthesized human face images
  publication-title: J. Commun. Softw. Syst.
– volume: 5
  start-page: 221
  year: 2016
  end-page: 232
  ident: bib0032
  article-title: Learning from imbalanced data: open challenges and future directions
  publication-title: Prog. Artif. Intell.
– volume: 8
  start-page: 199440
  year: 2020
  end-page: 199448
  ident: bib0004
  article-title: Balancing reconstruction error and kullback-leibler divergence in variational autoencoders
  publication-title: IEEE Access
– volume: 37
  start-page: 233
  year: 1991
  end-page: 243
  ident: bib0031
  article-title: Nonlinear principal component analysis using autoassociative neural networks
  publication-title: AIChE J.
– volume: 23
  start-page: 25427
  year: 2022
  end-page: 25436
  ident: bib0014
  article-title: Data augmentation and intelligent recognition in pavement texture using a deep learning
  publication-title: IEEE Trans. Intell. Trans. Syst.
– reference: Patro, S.G.K., Sahu, K.K., 2015. Normalization: a Preprocessing Stage.
– volume: 90
  year: 2021
  ident: bib0011
  article-title: An analysis of severity of oil spill caused by vessel accidents
  publication-title: Trans. Res. Part D: Trans. Environ.
– year: 2007
  ident: bib0023
  article-title: Approximating the Kullback leibler divergence between gaussian mixture models
  publication-title: Presented at the 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP ’07
– volume: 33
  start-page: 555
  year: 2017
  end-page: 562
  ident: bib0064
  article-title: An optimized real-time crash prediction model on freeway with over-sampling techniques based on support vector machine
  publication-title: J. Intell. Fuzzy Syst.
– year: 2014
  ident: bib0030
  article-title: Stochastic gradient VB and the variational auto-encoder
  publication-title: Second International Conference on Learning Representations
– volume: 165
  year: 2022
  ident: bib0042
  article-title: Transfer learning for spatio-temporal transferability of real-time crash prediction models
  publication-title: Accident Anal. Prev.
– volume: 26
  start-page: 1340
  year: 2010
  end-page: 1347
  ident: bib0001
  article-title: Permutation importance: a corrected feature importance measure
  publication-title: Bioinformatics
– volume: 376
  year: 2022
  ident: bib0057
  article-title: Emerging marine pollution from container ship accidents: risk characteristics, response strategies, and regulation advancements
  publication-title: J. Clean. Prod.
– reference: Doersch, C., 2021. Tutorial on variational autoencoders.
– volume: 181
  year: 2023
  ident: bib0003
  article-title: Identification of high-risk roadway segments for wrong-way driving crash using rare event modeling and data augmentation techniques
  publication-title: Accident Anal. Prev.
– volume: 3
  start-page: 27
  year: 2013
  ident: bib0005
  article-title: Evaluation measures for models assessment over imbalanced data sets
  publication-title: J. Inf. Eng. Appl.
– year: 2021
  ident: bib0028
  article-title: What makes better augmentation strategies?
  publication-title: Augment Difficult but Not too Different. Presented at the International Conference on Learning Representations
– year: 2017
  ident: bib0041
  article-title: A Unified Approach to Interpreting Model Predictions
  publication-title: Advances in Neural information Processing Systems
– volume: 96
  year: 2017
  ident: bib0060
  article-title: Unsupervised learning of phase transitions: from principal component analysis to variational autoencoders
  publication-title: Phys. Rev. E
– start-page: 1322
  year: 2008
  end-page: 1328
  ident: bib0021
  article-title: ADASYN: adaptive synthetic sampling approach for imbalanced learning
  publication-title: Presented at the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)
– year: 2016
  ident: bib0024
  article-title: beta-VAE: learning basic visual concepts with a constrained variational framework
  publication-title: Presented at the International Conference on Learning Representations
– start-page: 540
  year: 2019
  end-page: 541
  ident: bib0027
  article-title: Safe traffic sign recognition through data augmentation for autonomous vehicles software
  publication-title: Presented at the 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C)
– volume: 230
  year: 2023
  ident: bib0036
  article-title: Data-driven Bayesian network for risk analysis of global maritime accidents
  publication-title: Reliab. Eng. Syst. Saf.
– year: 2019
  ident: bib0039
  article-title: The continuous Bernoulli: fixing a pervasive error in variational autoencoders
  publication-title: Advances in Neural Information Processing Systems
– volume: 11
  start-page: 471
  year: 2021
  ident: bib0050
  article-title: Generation of pedestrian crossing scenarios using ped-cross generative adversarial network
  publication-title: Appl. Sci.
– volume: 29
  start-page: S83
  year: 2008
  end-page: S87
  ident: bib0017
  article-title: Sensitivity, specificity, receiver-operating characteristic (ROC) curves and likelihood ratios: communicating the performance of diagnostic tests
  publication-title: Clin. Biochem. Rev.
– volume: 8
  year: 2014
  ident: bib0020
  article-title: Review of maritime accidents involving chemicals - special focus on the baltic sea
  publication-title: Trans Nav., Int. J. Marine Nav. Safety Sea Trans.
– volume: 244
  year: 2024
  ident: bib0066
  article-title: A data-driven risk model for maritime casualty analysis: a global perspective
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 116
  start-page: 15849
  year: 2019
  end-page: 15854
  ident: bib0006
  article-title: Reconciling modern machine-learning practice and the classical bias–variance trade-off
  publication-title: Proc. National Acad. Sci.
– start-page: 101
  year: 2020
  end-page: 132
  ident: bib0045
  article-title: Assessment of autoencoder architectures for data representation
  publication-title: Deep learning: Concepts and Architectures, Studies In Computational Intelligence
– start-page: 1059
  year: 2018
  end-page: 1068
  ident: bib0065
  article-title: Deep interest network for click-through rate prediction
  publication-title: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’18
– reference: .
– reference: Seger, C., 2018. An investigation of categorical variable encoding techniques in machine learning: binary versus one-hot and feature hashing.
– volume: 11
  start-page: 109
  year: 2002
  end-page: 114
  ident: bib0018
  article-title: Assessing the risk of pollution from ship accidents. Disaster Prevention and Management
  publication-title: Int J.
– start-page: 570
  year: 2002
  end-page: 575
  ident: bib0038
  article-title: Instability of decision tree classification algorithms
  publication-title: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’02
– reference: Brandt, J., Lanzén, E., 2021. A comparative review of SMOTE and ADASYN in imbalanced data classification.
– volume: 9
  start-page: 1
  year: 2000
  end-page: 38
  ident: bib0009
  article-title: Radial basis functions
  publication-title: Acta Numerica
– volume: 7
  start-page: 307
  year: 2016
  end-page: 320
  ident: bib0035
  article-title: Ship engines and air pollutants: emission during fuel change-over and dispersion over coastal areas
  publication-title: Int. J. Energy Environ. Eng.
– volume: 14
  start-page: 199
  year: 2004
  end-page: 222
  ident: bib0048
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
– start-page: 1
  year: 2016
  end-page: 6
  ident: bib0019
  article-title: A new under-sampling method using genetic algorithm for imbalanced DATA classification
  publication-title: Proceedings of the 10th International Conference on Ubiquitous Information Management and Communication, IMCOM ’16
– volume: 32
  start-page: 377
  year: 1996
  end-page: 388
  ident: bib0052
  article-title: Determinants of cargo damage risk and severity: the case of containership accidents
  publication-title: Logist. Transp. Rev.
– start-page: 451
  year: 2018
  end-page: 455
  ident: bib0054
  article-title: Multilayer perceptron (MLP)
  publication-title: Geomatic Approaches for Modeling Land Change Scenarios, Lecture Notes in Geoinformation and Cartography
– volume: 6
  start-page: 405
  year: 2001
  end-page: 415
  ident: bib0053
  article-title: Vessel accident oil-spillage: post US OPA-90
  publication-title: Trans. Res. Part D: Transp. Environ.
– volume: 171
  year: 2021
  ident: bib0033
  article-title: A risk management framework for maritime Pollution Preparedness and Response: concepts, processes and tools
  publication-title: Mar. Pollut. Bull.
– ident: 10.1016/j.ress.2024.110391_bib0015
– volume: 165
  year: 2022
  ident: 10.1016/j.ress.2024.110391_bib0042
  article-title: Transfer learning for spatio-temporal transferability of real-time crash prediction models
  publication-title: Accident Anal. Prev.
  doi: 10.1016/j.aap.2021.106511
– volume: 37
  start-page: 233
  year: 1991
  ident: 10.1016/j.ress.2024.110391_bib0031
  article-title: Nonlinear principal component analysis using autoassociative neural networks
  publication-title: AIChE J.
  doi: 10.1002/aic.690370209
– volume: 8
  start-page: 199440
  year: 2020
  ident: 10.1016/j.ress.2024.110391_bib0004
  article-title: Balancing reconstruction error and kullback-leibler divergence in variational autoencoders
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3034828
– start-page: 451
  year: 2018
  ident: 10.1016/j.ress.2024.110391_bib0054
  article-title: Multilayer perceptron (MLP)
  doi: 10.1007/978-3-319-60801-3_27
– start-page: 1322
  year: 2008
  ident: 10.1016/j.ress.2024.110391_bib0021
  article-title: ADASYN: adaptive synthetic sampling approach for imbalanced learning
– volume: 62
  start-page: 2427
  year: 2011
  ident: 10.1016/j.ress.2024.110391_bib0063
  article-title: The effectiveness of double hulls in reducing vessel-accident oil spillage
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2011.08.026
– volume: 244
  year: 2024
  ident: 10.1016/j.ress.2024.110391_bib0066
  article-title: A data-driven risk model for maritime casualty analysis: a global perspective
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2023.109925
– ident: 10.1016/j.ress.2024.110391_bib0044
  doi: 10.17148/IARJSET.2015.2305
– volume: 151
  year: 2021
  ident: 10.1016/j.ress.2024.110391_bib0026
  article-title: Crash data augmentation using variational autoencoder
  publication-title: Accident Anal. Prev.
  doi: 10.1016/j.aap.2020.105950
– ident: 10.1016/j.ress.2024.110391_bib0002
– ident: 10.1016/j.ress.2024.110391_bib0056
  doi: 10.1109/WACV48630.2021.00081
– volume: 237
  year: 2023
  ident: 10.1016/j.ress.2024.110391_bib0051
  article-title: Data augmentation strategy for power inverter fault diagnosis based on wasserstein distance and auxiliary classification generative adversarial network
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2023.109360
– volume: 230
  year: 2023
  ident: 10.1016/j.ress.2024.110391_bib0036
  article-title: Data-driven Bayesian network for risk analysis of global maritime accidents
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2022.108938
– volume: 33
  start-page: 555
  year: 2017
  ident: 10.1016/j.ress.2024.110391_bib0064
  article-title: An optimized real-time crash prediction model on freeway with over-sampling techniques based on support vector machine
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-162155
– start-page: 540
  year: 2019
  ident: 10.1016/j.ress.2024.110391_bib0027
  article-title: Safe traffic sign recognition through data augmentation for autonomous vehicles software
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.1016/j.ress.2024.110391_bib0012
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– volume: 117
  year: 2020
  ident: 10.1016/j.ress.2024.110391_bib0010
  article-title: Real-time crash prediction on expressways using deep generative models
  publication-title: Trans. Res. Part C: Emerging Technol.
  doi: 10.1016/j.trc.2020.102697
– volume: 14
  start-page: 199
  year: 2004
  ident: 10.1016/j.ress.2024.110391_bib0048
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 14
  start-page: 54
  year: 2023
  ident: 10.1016/j.ress.2024.110391_bib0061
  article-title: A comparison of undersampling, oversampling, and SMOTE methods for dealing with imbalanced classification in educational data mining
  publication-title: Information
  doi: 10.3390/info14010054
– ident: 10.1016/j.ress.2024.110391_bib0008
– start-page: 570
  year: 2002
  ident: 10.1016/j.ress.2024.110391_bib0038
  article-title: Instability of decision tree classification algorithms
– volume: 27
  start-page: 130
  year: 2015
  ident: 10.1016/j.ress.2024.110391_bib0049
  article-title: Decision tree methods: applications for classification and prediction
  publication-title: Shanghai. Arch. Psychiatry
– volume: 9
  start-page: 1
  year: 2000
  ident: 10.1016/j.ress.2024.110391_bib0009
  article-title: Radial basis functions
  publication-title: Acta Numerica
  doi: 10.1017/S0962492900000015
– ident: 10.1016/j.ress.2024.110391_bib0047
– start-page: 1
  year: 2016
  ident: 10.1016/j.ress.2024.110391_bib0019
  article-title: A new under-sampling method using genetic algorithm for imbalanced DATA classification
– volume: 3
  start-page: 27
  year: 2013
  ident: 10.1016/j.ress.2024.110391_bib0005
  article-title: Evaluation measures for models assessment over imbalanced data sets
  publication-title: J. Inf. Eng. Appl.
– volume: 8
  year: 2014
  ident: 10.1016/j.ress.2024.110391_bib0020
  article-title: Review of maritime accidents involving chemicals - special focus on the baltic sea
  publication-title: Trans Nav., Int. J. Marine Nav. Safety Sea Trans.
– start-page: 57
  year: 2011
  ident: 10.1016/j.ress.2024.110391_bib0007
  article-title: The Development and meaning of vessel flags in the cruise industry
– volume: 118
  year: 2023
  ident: 10.1016/j.ress.2024.110391_bib0025
  article-title: Effects of Arctic commercial shipping on environments and communities: context, governance, priorities
  publication-title: Trans. Res. Part D: Trans. Environ.
  doi: 10.1016/j.trd.2023.103731
– volume: 11
  start-page: 471
  year: 2021
  ident: 10.1016/j.ress.2024.110391_bib0050
  article-title: Generation of pedestrian crossing scenarios using ped-cross generative adversarial network
  publication-title: Appl. Sci.
  doi: 10.3390/app11020471
– start-page: 4653
  year: 2021
  ident: 10.1016/j.ress.2024.110391_bib0059
  article-title: Time series data augmentation for deep learning: a survey
– volume: 229
  year: 2023
  ident: 10.1016/j.ress.2024.110391_bib0034
  article-title: Pattern investigation of total loss maritime accidents based on association rule mining
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2022.108893
– year: 2016
  ident: 10.1016/j.ress.2024.110391_bib0024
  article-title: beta-VAE: learning basic visual concepts with a constrained variational framework
– year: 2019
  ident: 10.1016/j.ress.2024.110391_bib0039
  article-title: The continuous Bernoulli: fixing a pervasive error in variational autoencoders
– year: 2017
  ident: 10.1016/j.ress.2024.110391_bib0041
  article-title: A Unified Approach to Interpreting Model Predictions
– start-page: 363
  year: 2019
  ident: 10.1016/j.ress.2024.110391_bib0062
  article-title: Enhancing crash injury severity prediction on imbalanced crash data by sampling technique with variable selection
– volume: 7
  start-page: 307
  year: 2016
  ident: 10.1016/j.ress.2024.110391_bib0035
  article-title: Ship engines and air pollutants: emission during fuel change-over and dispersion over coastal areas
  publication-title: Int. J. Energy Environ. Eng.
  doi: 10.1007/s40095-016-0211-7
– start-page: 1
  year: 2017
  ident: 10.1016/j.ress.2024.110391_bib0058
  article-title: Variational autoencoder based synthetic data generation for imbalanced learning
– volume: 17
  start-page: 124
  year: 2021
  ident: 10.1016/j.ress.2024.110391_bib0043
  article-title: The effect of latent space dimension on the quality of synthesized human face images
  publication-title: J. Commun. Softw. Syst.
  doi: 10.24138/jcomss-2021-0035
– volume: 23
  start-page: 25427
  year: 2022
  ident: 10.1016/j.ress.2024.110391_bib0014
  article-title: Data augmentation and intelligent recognition in pavement texture using a deep learning
  publication-title: IEEE Trans. Intell. Trans. Syst.
  doi: 10.1109/TITS.2022.3140586
– volume: 26
  start-page: 1340
  year: 2010
  ident: 10.1016/j.ress.2024.110391_bib0001
  article-title: Permutation importance: a corrected feature importance measure
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq134
– volume: 196
  year: 2023
  ident: 10.1016/j.ress.2024.110391_bib0013
  article-title: Factor diagnosis and governance strategies of ship oil spill accidents based on formal concept analysis
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2023.115606
– volume: 21
  start-page: 1263
  year: 2009
  ident: 10.1016/j.ress.2024.110391_bib0022
  article-title: Learning from imbalanced data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2008.239
– volume: 6
  start-page: 405
  year: 2001
  ident: 10.1016/j.ress.2024.110391_bib0053
  article-title: Vessel accident oil-spillage: post US OPA-90
  publication-title: Trans. Res. Part D: Transp. Environ.
  doi: 10.1016/S1361-9209(01)00002-5
– start-page: 1059
  year: 2018
  ident: 10.1016/j.ress.2024.110391_bib0065
  article-title: Deep interest network for click-through rate prediction
– volume: 376
  year: 2022
  ident: 10.1016/j.ress.2024.110391_bib0057
  article-title: Emerging marine pollution from container ship accidents: risk characteristics, response strategies, and regulation advancements
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.134266
– volume: 116
  start-page: 15849
  year: 2019
  ident: 10.1016/j.ress.2024.110391_bib0006
  article-title: Reconciling modern machine-learning practice and the classical bias–variance trade-off
  publication-title: Proc. National Acad. Sci.
  doi: 10.1073/pnas.1903070116
– volume: 181
  year: 2023
  ident: 10.1016/j.ress.2024.110391_bib0003
  article-title: Identification of high-risk roadway segments for wrong-way driving crash using rare event modeling and data augmentation techniques
  publication-title: Accident Anal. Prev.
  doi: 10.1016/j.aap.2022.106933
– year: 2007
  ident: 10.1016/j.ress.2024.110391_bib0023
  article-title: Approximating the Kullback leibler divergence between gaussian mixture models
– volume: 1
  start-page: 14
  year: 2011
  ident: 10.1016/j.ress.2024.110391_bib0040
  article-title: Classification and regression trees
  publication-title: WIREs Data Mining Knowl. Discov.
  doi: 10.1002/widm.8
– volume: 171
  year: 2021
  ident: 10.1016/j.ress.2024.110391_bib0033
  article-title: A risk management framework for maritime Pollution Preparedness and Response: concepts, processes and tools
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2021.112724
– volume: 44
  year: 2021
  ident: 10.1016/j.ress.2024.110391_bib0046
  article-title: An introduction to deep generative modeling
  publication-title: GAMM-Mitteilungen
  doi: 10.1002/gamm.202100008
– volume: 29
  start-page: S83
  year: 2008
  ident: 10.1016/j.ress.2024.110391_bib0017
  article-title: Sensitivity, specificity, receiver-operating characteristic (ROC) curves and likelihood ratios: communicating the performance of diagnostic tests
  publication-title: Clin. Biochem. Rev.
– volume: 5
  start-page: 221
  year: 2016
  ident: 10.1016/j.ress.2024.110391_bib0032
  article-title: Learning from imbalanced data: open challenges and future directions
  publication-title: Prog. Artif. Intell.
  doi: 10.1007/s13748-016-0094-0
– ident: 10.1016/j.ress.2024.110391_bib0016
– start-page: 101
  year: 2020
  ident: 10.1016/j.ress.2024.110391_bib0045
  article-title: Assessment of autoencoder architectures for data representation
– volume: 144
  year: 2020
  ident: 10.1016/j.ress.2024.110391_bib0037
  article-title: The application of novel connected vehicles emulated data on real-time crash potential prediction for arterials
  publication-title: Accident Anal. Prev.
  doi: 10.1016/j.aap.2020.105658
– volume: 32
  start-page: 377
  year: 1996
  ident: 10.1016/j.ress.2024.110391_bib0052
  article-title: Determinants of cargo damage risk and severity: the case of containership accidents
  publication-title: Logist. Transp. Rev.
– volume: 11
  start-page: 109
  year: 2002
  ident: 10.1016/j.ress.2024.110391_bib0018
  article-title: Assessing the risk of pollution from ship accidents. Disaster Prevention and Management
  publication-title: Int J.
– volume: 96
  year: 2017
  ident: 10.1016/j.ress.2024.110391_bib0060
  article-title: Unsupervised learning of phase transitions: from principal component analysis to variational autoencoders
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.96.022140
– year: 2021
  ident: 10.1016/j.ress.2024.110391_bib0028
  article-title: What makes better augmentation strategies?
– volume: 90
  year: 2021
  ident: 10.1016/j.ress.2024.110391_bib0011
  article-title: An analysis of severity of oil spill caused by vessel accidents
  publication-title: Trans. Res. Part D: Trans. Environ.
  doi: 10.1016/j.trd.2020.102662
– volume: 12
  start-page: 307
  year: 2019
  ident: 10.1016/j.ress.2024.110391_bib0029
  article-title: An introduction to variational autoencoders
  publication-title: MAL
– year: 2014
  ident: 10.1016/j.ress.2024.110391_bib0030
  article-title: Stochastic gradient VB and the variational auto-encoder
– volume: 243
  year: 2024
  ident: 10.1016/j.ress.2024.110391_bib0055
  article-title: A novel data augmentation approach to fault diagnosis with class-imbalance problem
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2023.109832
SSID ssj0004957
Score 2.4626477
Snippet •Prediction of maritime casualties resulting in pollution occurrence powered by AI technology.•Employment of VAE based data augmentation to address data...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110391
SubjectTerms Data augmentation
Machine learning
Maritime casualty
Maritime pollution
Pollution prediction
Variational autoencoder (VAE)
Title An ensemble method for investigating maritime casualties resulting in pollution occurrence: Data augmentation and feature analysis
URI https://dx.doi.org/10.1016/j.ress.2024.110391
Volume 251
WOSCitedRecordID wos001288638600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0951-8320
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004957
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWWLQc4ID5Fy4d84BalyibO2ultVYqAQ4XEIi2nyHGdKmU3XXV3y_bKP-AfM5Oxk1BQBUhcoiiynSjzYo8n894w9kok4DRkpQn1OEtDYaUOtTVZKCQqlQhrVGmaYhPy-FjNZtmHweC758JczmVdq-02W_5XU8M1MDZSZ__C3O2gcAHOwehwBLPD8Y8MP6kD2JraBVKiqD50k0pYdYIa9Wmw0ChmtMCkr9VGz1FVNYCNN2YXEsdliSWQyZs0ptFwMg2L_bVe60BvTheOs0S5zKXV7k8ESZz0XV5MeiYx8Ct4sFb9sMEc6UgHK106OZImN4i475vzr7Zq1wyXOfy5qr7ANN39zTh07JIpwPyqa-6i4LB2bKt-YCMWjuHXRts846ZLb6Kw5SiEWSjqz-Axadb-shpQYOJsHwMX-3gLJD0kVB3smsr2RxwYx8WcWjFOoltsJ5ZppoZsZ_LuaPa-I9tmJB_rH8QxsShp8Pqdfu_t9DyY6X12z209-IQg84ANbP2Q3e0JUj5i3yY19-DhBB4O4OE_gYd78PAOPLwFD7TlLXh4B54DjtDhfehwgA530OEeOo_ZpzdH08O3oavSEZokitZhKowSRVGWOlWRjhP40hMhC6VSJS16vKUejSMLWw0tRWZEVIKXW5hEpYVI7ahInrBhfV7bp4zHUibSlKkWAmUGxxpGgoGK4gQ2xfIk22Uj_zZz4yTssZLKPPe5imc5WiBHC-RkgV0WtH2WJOByY-vUGyl3Lii5ljlg6oZ-e__Y7xm700H_ORuuLzb2BbttLtfV6uKlg94PXpGx7A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ensemble+method+for+investigating+maritime+casualties+resulting+in+pollution+occurrence%3A+Data+augmentation+and+feature+analysis&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Li%2C+Duowei&rft.au=Wong%2C+Yiik+Diew&rft.au=Chen%2C+Tianyi&rft.au=Wang%2C+Nanxi&rft.date=2024-11-01&rft.pub=Elsevier+Ltd&rft.issn=0951-8320&rft.volume=251&rft_id=info:doi/10.1016%2Fj.ress.2024.110391&rft.externalDocID=S0951832024004630
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon