Improved spectral convergence rates for graph Laplacians on ε-graphs and k-NN graphs

In this paper we improve the spectral convergence rates for graph-based approximations of weighted Laplace-Beltrami operators constructed from random data. We utilize regularity of the continuum eigenfunctions and strong pointwise consistency results to prove that spectral convergence rates are the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied and computational harmonic analysis Ročník 60; s. 123 - 175
Hlavní autori: Calder, Jeff, García Trillos, Nicolás
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.09.2022
Predmet:
ISSN:1063-5203, 1096-603X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper we improve the spectral convergence rates for graph-based approximations of weighted Laplace-Beltrami operators constructed from random data. We utilize regularity of the continuum eigenfunctions and strong pointwise consistency results to prove that spectral convergence rates are the same as the pointwise consistency rates for graph Laplacians. In particular, for an optimal choice of the graph connectivity ε, our results show that the eigenvalues and eigenvectors of the graph Laplacian converge to those of a weighted Laplace-Beltrami operator at a rate of O(n−1/(m+4)), up to log factors, where m is the manifold dimension and n is the number of vertices in the graph. Our approach is general and allows us to analyze a large variety of graph constructions that include ε-graphs and k-NN graphs. We also present the results of numerical experiments analyzing convergence rates on the two dimensional sphere.
ISSN:1063-5203
1096-603X
DOI:10.1016/j.acha.2022.02.004