Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization
We show that the NP-complete Feedback Vertex Set problem, which asks for the smallest set of vertices to remove from a graph to destroy all cycles, is deterministically solvable in O ( c k ⋅ m ) time. Here, m denotes the number of graph edges, k denotes the size of the feedback vertex set searched f...
Uloženo v:
| Vydáno v: | Journal of computer and system sciences Ročník 72; číslo 8; s. 1386 - 1396 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.12.2006
|
| Témata: | |
| ISSN: | 0022-0000, 1090-2724 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We show that the NP-complete
Feedback Vertex Set problem, which asks for the smallest set of vertices to remove from a graph to destroy all cycles, is deterministically solvable in
O
(
c
k
⋅
m
)
time. Here,
m denotes the number of graph edges,
k denotes the size of the feedback vertex set searched for, and
c is a constant. We extend this to an algorithm enumerating
all solutions in
O
(
d
k
⋅
m
)
time for a (larger) constant
d. As a further result, we present a fixed-parameter algorithm with runtime
O
(
2
k
⋅
m
2
)
for the NP-complete
Edge Bipartization problem, which asks for at most
k edges to remove from a graph to make it bipartite. |
|---|---|
| ISSN: | 0022-0000 1090-2724 |
| DOI: | 10.1016/j.jcss.2006.02.001 |