MAEDAY: MAE for few- and zero-shot AnomalY-Detection
We propose using Masked Auto-Encoder (MAE), a transformer model self-supervisedly trained on image inpainting, for anomaly detection (AD). Assuming anomalous regions are harder to reconstruct compared with normal regions. MAEDAY is the first image-reconstruction-based anomaly detection method that u...
Uloženo v:
| Vydáno v: | Computer vision and image understanding Ročník 241; s. 103958 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.04.2024
|
| Témata: | |
| ISSN: | 1077-3142, 1090-235X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We propose using Masked Auto-Encoder (MAE), a transformer model self-supervisedly trained on image inpainting, for anomaly detection (AD). Assuming anomalous regions are harder to reconstruct compared with normal regions. MAEDAY is the first image-reconstruction-based anomaly detection method that utilizes a pre-trained model, enabling its use for Few-Shot Anomaly Detection (FSAD). We also show the same method works surprisingly well for the novel tasks of Zero-Shot AD (ZSAD) and Zero-Shot Foreign Object Detection (ZSFOD), where no normal samples are available.
•Pre-training MAE on an arbitrary set of images and using it for Anomaly-Detection.•Suggesting the new task of Zero-Shot Anomaly-Detection and demonstrating strong results.•Demonstrating strong results for the new task of Zero-Shot Foreign Object Detection.•Releasing a new Foreign Object Detection dataset. |
|---|---|
| ISSN: | 1077-3142 1090-235X |
| DOI: | 10.1016/j.cviu.2024.103958 |