Partitions of the set of nonnegative integers with the same representation functions
For a set of nonnegative integers S let RS(n) denote the number of unordered representations of the integer n as the sum of two different terms from S. In this paper we focus on partitions of the natural numbers into two sets affording identical representation functions. We solve a recent problem of...
Uložené v:
| Vydané v: | Discrete mathematics Ročník 340; číslo 6; s. 1154 - 1161 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.06.2017
|
| Predmet: | |
| ISSN: | 0012-365X, 1872-681X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | For a set of nonnegative integers S let RS(n) denote the number of unordered representations of the integer n as the sum of two different terms from S. In this paper we focus on partitions of the natural numbers into two sets affording identical representation functions. We solve a recent problem of Chen and Lev. |
|---|---|
| ISSN: | 0012-365X 1872-681X |
| DOI: | 10.1016/j.disc.2017.01.011 |