Partitions of the set of nonnegative integers with the same representation functions

For a set of nonnegative integers S let RS(n) denote the number of unordered representations of the integer n as the sum of two different terms from S. In this paper we focus on partitions of the natural numbers into two sets affording identical representation functions. We solve a recent problem of...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Discrete mathematics Ročník 340; číslo 6; s. 1154 - 1161
Hlavní autori: Kiss, Sándor Z., Sándor, Csaba
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.06.2017
Predmet:
ISSN:0012-365X, 1872-681X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract For a set of nonnegative integers S let RS(n) denote the number of unordered representations of the integer n as the sum of two different terms from S. In this paper we focus on partitions of the natural numbers into two sets affording identical representation functions. We solve a recent problem of Chen and Lev.
AbstractList For a set of nonnegative integers S let RS(n) denote the number of unordered representations of the integer n as the sum of two different terms from S. In this paper we focus on partitions of the natural numbers into two sets affording identical representation functions. We solve a recent problem of Chen and Lev.
Author Sándor, Csaba
Kiss, Sándor Z.
Author_xml – sequence: 1
  givenname: Sándor Z.
  surname: Kiss
  fullname: Kiss, Sándor Z.
  email: kisspest@cs.elte.hu
– sequence: 2
  givenname: Csaba
  surname: Sándor
  fullname: Sándor, Csaba
  email: csandor@math.bme.hu
BookMark eNp9kM9qwzAMxs3oYG23F9gpL5BMdmInhV1G2T8obIcOejOuLbcurVNsr2Nvv2TZaYeCQBLo90n6JmTkW4-E3FIoKFBxtyuMi7pgQOsCaBf0goxpU7NcNHQ1ImMAyvJS8NUVmcS4g64XZTMmy3cVkkuu9TFrbZa2mEVMfdlt8LhRyZ0wcz7hBkPMvlzaDkPqgFnAY8CIPqleILOfXv8qXZNLq_YRb_7ylHw8PS7nL_ni7fl1_rDIdQmQ8oozrKFBxhCFYZrP2IzzZg1mZgwoVaPRa4FcWDRIhYKSY1Wz0kJFS7tuyilpBl0d2hgDWqndcEsKyu0lBdm7I3eyd0f27kigXdAOZf_QY3AHFb7PQ_cDhN1TJ4dBRu3QazQuoE7StO4c_gPgM4Kv
CitedBy_id crossref_primary_10_1007_s41980_023_00786_4
crossref_primary_10_1007_s11401_025_0012_5
crossref_primary_10_1007_s11464_022_0220_1
crossref_primary_10_1016_j_disc_2018_07_015
crossref_primary_10_1017_S0004972720000945
crossref_primary_10_1016_j_ejc_2020_103293
crossref_primary_10_1017_S0004972718001223
crossref_primary_10_1007_s10998_024_00592_3
crossref_primary_10_1017_S0004972718001107
crossref_primary_10_2478_udt_2019_0008
crossref_primary_10_1007_s10998_018_0240_5
crossref_primary_10_1007_s10998_019_00286_1
crossref_primary_10_1016_j_jnt_2024_10_007
crossref_primary_10_1017_S0013091524000907
crossref_primary_10_1016_j_jnt_2022_03_014
crossref_primary_10_1007_s10474_021_01183_1
crossref_primary_10_1007_s11401_026_0044_5
crossref_primary_10_1016_j_aam_2023_102533
crossref_primary_10_1017_S0004972722000119
crossref_primary_10_1017_S0004972717000818
crossref_primary_10_1016_j_disc_2020_111981
crossref_primary_10_1007_s11139_024_01021_2
crossref_primary_10_1007_s10998_021_00423_9
crossref_primary_10_1007_s10998_021_00428_4
crossref_primary_10_1007_s11139_024_00903_9
Cites_doi 10.1016/j.disc.2007.06.006
10.37236/1831
10.1016/j.jnt.2009.04.020
10.4064/aa103-2-3
10.1007/s11425-011-4234-5
10.1016/j.disc.2014.11.011
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.disc.2017.01.011
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-681X
EndPage 1161
ExternalDocumentID 10_1016_j_disc_2017_01_011
S0012365X17300110
GroupedDBID --K
--M
-DZ
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
41~
457
4G.
5GY
5VS
6I.
6OB
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
M26
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
VH1
WH7
WUQ
XJT
XOL
XPP
ZCG
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-452e708e22ee6d2c5929558b0d9dd0aa7edcb6e56fede16a035e4723f0413fb83
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000398751100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0012-365X
IngestDate Tue Nov 18 21:24:54 EST 2025
Sat Nov 29 06:17:54 EST 2025
Fri Feb 23 02:22:13 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Representation functions
Partitions of the set of natural numbers
Additive number theory
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-452e708e22ee6d2c5929558b0d9dd0aa7edcb6e56fede16a035e4723f0413fb83
PageCount 8
ParticipantIDs crossref_citationtrail_10_1016_j_disc_2017_01_011
crossref_primary_10_1016_j_disc_2017_01_011
elsevier_sciencedirect_doi_10_1016_j_disc_2017_01_011
PublicationCentury 2000
PublicationDate June 2017
2017-06-00
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: June 2017
PublicationDecade 2010
PublicationTitle Discrete mathematics
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chen, Wang (b4) 2003; 113
Lev (b6) 2004; 11
Tang (b9) 2008; 308
Tang (b10) 2016; 37
Chen, Tang (b3) 2009; 129
Tang, Yu (b11) 2012; 12
Chen, Lev (b2) 2016; 16
Sándor (b8) 2004; 4
Chen (b1) 2011; 54
Qu (b7) 2015; 338
Dombi (b5) 2002; 103
Lev (10.1016/j.disc.2017.01.011_b6) 2004; 11
Tang (10.1016/j.disc.2017.01.011_b11) 2012; 12
Chen (10.1016/j.disc.2017.01.011_b1) 2011; 54
Chen (10.1016/j.disc.2017.01.011_b2) 2016; 16
Tang (10.1016/j.disc.2017.01.011_b9) 2008; 308
Tang (10.1016/j.disc.2017.01.011_b10) 2016; 37
Qu (10.1016/j.disc.2017.01.011_b7) 2015; 338
Chen (10.1016/j.disc.2017.01.011_b4) 2003; 113
Dombi (10.1016/j.disc.2017.01.011_b5) 2002; 103
Chen (10.1016/j.disc.2017.01.011_b3) 2009; 129
Sándor (10.1016/j.disc.2017.01.011_b8) 2004; 4
References_xml – volume: 54
  start-page: 1317
  year: 2011
  end-page: 1331
  ident: b1
  article-title: On the values of representation functions
  publication-title: Sci. China Math.
– volume: 338
  start-page: 571
  year: 2015
  end-page: 575
  ident: b7
  article-title: On the nonvanishing of representation functions of some special sequences
  publication-title: Discrete Math.
– volume: 4
  start-page: A18
  year: 2004
  ident: b8
  article-title: Partitions of natural numbers and their representation functions
  publication-title: Integers
– volume: 37
  start-page: 41
  year: 2016
  end-page: 46
  ident: b10
  article-title: Partitions of natural numbers and their representation functions
  publication-title: Chinese Ann. Math. Ser. A
– volume: 16
  start-page: A36
  year: 2016
  ident: b2
  article-title: Integer sets with identical representation functions
  publication-title: Integers
– volume: 129
  start-page: 2689
  year: 2009
  end-page: 2695
  ident: b3
  article-title: Partitions of natural numbers with the same representation functions
  publication-title: J. Number Theory
– volume: 11
  start-page: R78
  year: 2004
  ident: b6
  article-title: Reconstructing integer sets from their representation functions
  publication-title: Electron. J. Combin.
– volume: 308
  start-page: 2614
  year: 2008
  end-page: 2616
  ident: b9
  article-title: Partitions of the set of natural numbers and their representation functions
  publication-title: Discrete Math.
– volume: 12
  start-page: A53
  year: 2012
  ident: b11
  article-title: A note on partitions of natural numbers and their representation functions
  publication-title: Integers
– volume: 113
  start-page: 299
  year: 2003
  end-page: 303
  ident: b4
  article-title: On additive properties of two special sequences
  publication-title: Acta Arith.
– volume: 103
  start-page: 137
  year: 2002
  end-page: 146
  ident: b5
  article-title: Additive properties of certain sets
  publication-title: Acta Arith.
– volume: 113
  start-page: 299
  year: 2003
  ident: 10.1016/j.disc.2017.01.011_b4
  article-title: On additive properties of two special sequences
  publication-title: Acta Arith.
– volume: 308
  start-page: 2614
  year: 2008
  ident: 10.1016/j.disc.2017.01.011_b9
  article-title: Partitions of the set of natural numbers and their representation functions
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2007.06.006
– volume: 16
  start-page: A36
  year: 2016
  ident: 10.1016/j.disc.2017.01.011_b2
  article-title: Integer sets with identical representation functions
  publication-title: Integers
– volume: 37
  start-page: 41
  year: 2016
  ident: 10.1016/j.disc.2017.01.011_b10
  article-title: Partitions of natural numbers and their representation functions
  publication-title: Chinese Ann. Math. Ser. A
– volume: 4
  start-page: A18
  year: 2004
  ident: 10.1016/j.disc.2017.01.011_b8
  article-title: Partitions of natural numbers and their representation functions
  publication-title: Integers
– volume: 11
  start-page: R78
  year: 2004
  ident: 10.1016/j.disc.2017.01.011_b6
  article-title: Reconstructing integer sets from their representation functions
  publication-title: Electron. J. Combin.
  doi: 10.37236/1831
– volume: 129
  start-page: 2689
  year: 2009
  ident: 10.1016/j.disc.2017.01.011_b3
  article-title: Partitions of natural numbers with the same representation functions
  publication-title: J. Number Theory
  doi: 10.1016/j.jnt.2009.04.020
– volume: 103
  start-page: 137
  year: 2002
  ident: 10.1016/j.disc.2017.01.011_b5
  article-title: Additive properties of certain sets
  publication-title: Acta Arith.
  doi: 10.4064/aa103-2-3
– volume: 12
  start-page: A53
  year: 2012
  ident: 10.1016/j.disc.2017.01.011_b11
  article-title: A note on partitions of natural numbers and their representation functions
  publication-title: Integers
– volume: 54
  start-page: 1317
  year: 2011
  ident: 10.1016/j.disc.2017.01.011_b1
  article-title: On the values of representation functions
  publication-title: Sci. China Math.
  doi: 10.1007/s11425-011-4234-5
– volume: 338
  start-page: 571
  year: 2015
  ident: 10.1016/j.disc.2017.01.011_b7
  article-title: On the nonvanishing of representation functions of some special sequences
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2014.11.011
SSID ssj0001638
Score 2.3031318
Snippet For a set of nonnegative integers S let RS(n) denote the number of unordered representations of the integer n as the sum of two different terms from S. In this...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1154
SubjectTerms Additive number theory
Partitions of the set of natural numbers
Representation functions
Title Partitions of the set of nonnegative integers with the same representation functions
URI https://dx.doi.org/10.1016/j.disc.2017.01.011
Volume 340
WOSCitedRecordID wos000398751100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-681X
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0001638
  issn: 0012-365X
  databaseCode: AIEXJ
  dateStart: 19950120
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBcj3cP2MPbJuq1DD3sLLpZsWfJj6Qfb2EqhGZi9GNmSR0rrhiQt_fN351Nsdx1lGwyCMYrsxLqf7s6nu58Y-wBOgc9j6yOVVy5KdV1F1sDEsznY4kp5kHnHrv9FHx-boshPQlrRqttOQLetubnJF_9V1NAGwsbS2b8Qd39TaIBzEDocQexw_CPBn2Bbn9-GfuXKd8v9Lea0_CCi744lAmt3KQ6LnewF7qCyGMqR2ikavSGgF1zYgzloGnC1pxc94-uwIDSnPdhPu_V30brL5fT7bh_FGVq7-OzKVnYcdRB6yI6iUNidchhSr8iAmKmCjAtpVKNllBlRjFVuQhRNAVtjBYrsQCNjLARRtd9R9BRzONvF2mVM0NMd-WrQ27cJtE-Jp04VArn5BdbjbUmtcjNhW3ufDovPveVG35QsNz1GKLKifMBff-n3jszIOZk9ZU_CWwXfIzQ8Yw98-5w9_joI6AWbDbjglw2HbzjgAk9HuOAbXHDEBXUCXPDbuOA9Ll6yb0eHs_2PUdhSI6rh2ddRqqTXsfFSep85WSuYkUqZKna5c7G12ru6yrzKGu-8yGycKJ9qmTQxODtNZZJXbAL_yr9mXDikspPO1XGa1hJeO1PlfVNlwimRyHybic34lHXgm8dtT87LTWLhWYljWuKYlrGAj9hm0_6aBbGt3NtbbYa9DP4i-YEloOSe697843Vv2aNhKrxjk_Xyyu-wh_X1er5avg9g-gnNSI7o
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partitions+of+the+set+of+nonnegative+integers+with+the+same+representation+functions&rft.jtitle=Discrete+mathematics&rft.au=Kiss%2C+S%C3%A1ndor+Z.&rft.au=S%C3%A1ndor%2C+Csaba&rft.date=2017-06-01&rft.pub=Elsevier+B.V&rft.issn=0012-365X&rft.eissn=1872-681X&rft.volume=340&rft.issue=6&rft.spage=1154&rft.epage=1161&rft_id=info:doi/10.1016%2Fj.disc.2017.01.011&rft.externalDocID=S0012365X17300110
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-365X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-365X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-365X&client=summon