Augmented reality spatial programming paradigm applied to end-user robot programming

The market of collaborative robots is thriving due to their increasing affordability. The ability to program a collaborative robot without requiring a highly skilled specialist would increase their spread even more. Visual programming is a prevalent contemporary approach for end-users on desktops or...

Full description

Saved in:
Bibliographic Details
Published in:Robotics and computer-integrated manufacturing Vol. 89; p. 102770
Main Authors: Kapinus, Michal, Beran, Vítězslav, Materna, Zdeněk, Bambušek, Daniel
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.10.2024
Subjects:
ISSN:0736-5845, 1879-2537
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The market of collaborative robots is thriving due to their increasing affordability. The ability to program a collaborative robot without requiring a highly skilled specialist would increase their spread even more. Visual programming is a prevalent contemporary approach for end-users on desktops or handheld devices, allowing them to define the program logic quickly and easily. However, separating the interface from the robot’s task space makes defining spatial features difficult. At the same time, augmented reality can provide spatially situated interaction, which would solve the issue and allow end-users to intuitively program, adapt, and comprehend robotic programs that are inherently highly spatially linked to the real environment. Therefore, we have proposed Spatially Anchored Actions to address the problem of comprehension, programming, and adaptation of robotic programs by end-users, which is a form of visual programming in augmented reality. It uses semantic annotation of the environment and robot hand teaching to define spatially important points precisely. Individual program steps are created by attaching parametrizable, high-level actions to the points. Program flow is then defined by visually connecting individual actions. The interface is specifically designed for tablets, which provide a more immersive experience than phones and are more affordable and well-known by users than head-mounted displays. The realized prototype of a handheld AR user interface was compared against a commercially available desktop-based visual programming solution in a user study with 12 participants. According to the results, the novel interface significantly improves comprehension of pick and place-like programs, improves spatial information settings, and is more preferred by users than the existing tool. •End-user robot programming using augmented reality on a handheld device.•Faster and easier robot programming compared to a standard method.•The conceptual paradigm for spatial programming, applicable to various scenarios.
AbstractList The market of collaborative robots is thriving due to their increasing affordability. The ability to program a collaborative robot without requiring a highly skilled specialist would increase their spread even more. Visual programming is a prevalent contemporary approach for end-users on desktops or handheld devices, allowing them to define the program logic quickly and easily. However, separating the interface from the robot’s task space makes defining spatial features difficult. At the same time, augmented reality can provide spatially situated interaction, which would solve the issue and allow end-users to intuitively program, adapt, and comprehend robotic programs that are inherently highly spatially linked to the real environment. Therefore, we have proposed Spatially Anchored Actions to address the problem of comprehension, programming, and adaptation of robotic programs by end-users, which is a form of visual programming in augmented reality. It uses semantic annotation of the environment and robot hand teaching to define spatially important points precisely. Individual program steps are created by attaching parametrizable, high-level actions to the points. Program flow is then defined by visually connecting individual actions. The interface is specifically designed for tablets, which provide a more immersive experience than phones and are more affordable and well-known by users than head-mounted displays. The realized prototype of a handheld AR user interface was compared against a commercially available desktop-based visual programming solution in a user study with 12 participants. According to the results, the novel interface significantly improves comprehension of pick and place-like programs, improves spatial information settings, and is more preferred by users than the existing tool. •End-user robot programming using augmented reality on a handheld device.•Faster and easier robot programming compared to a standard method.•The conceptual paradigm for spatial programming, applicable to various scenarios.
ArticleNumber 102770
Author Beran, Vítězslav
Bambušek, Daniel
Kapinus, Michal
Materna, Zdeněk
Author_xml – sequence: 1
  givenname: Michal
  orcidid: 0000-0002-4728-8916
  surname: Kapinus
  fullname: Kapinus, Michal
  email: ikapinus@fit.vut.cz
– sequence: 2
  givenname: Vítězslav
  orcidid: 0000-0002-7495-6932
  surname: Beran
  fullname: Beran, Vítězslav
  email: beranv@fit.vut.cz
– sequence: 3
  givenname: Zdeněk
  orcidid: 0000-0001-5798-5435
  surname: Materna
  fullname: Materna, Zdeněk
  email: imaterna@fit.vut.cz
– sequence: 4
  givenname: Daniel
  orcidid: 0000-0002-7479-710X
  surname: Bambušek
  fullname: Bambušek, Daniel
  email: bambusekd@fit.vut.cz
BookMark eNp9kE1qwzAQhUVJoUnaC3SlCziVJVtyoJsQ-geBbtK1kKWxUbAlIymF3L4K6aJ0kdUMM-8b3rwFmjnvAKHHkqxKUvKnwypoO64ooVUeUCHIDZqXjVgXtGZihuZEMF7UTVXfoUWMB0KysmZztN8c-xFcAoMDqMGmE46TSlYNeAq-D2ocrevxpIIyth-xmqbBZnHyGJwpjhECDr716a_8Ht12aojw8FuX6Ov1Zb99L3afbx_bza7QjJBUVAxoo0nLqxJozeu20Sa74mStWMm4onnFa6VFbkUmWMc7rTthWkYaxgxbouZyVwcfY4BOapuyee9SUHaQJZHndORBntOR53TkJZ2M0n_oFOyowuk69HyBID_1bSHIqC04DcYG0Ekab6_hP9qTgTo
CitedBy_id crossref_primary_10_1007_s10489_024_06098_2
crossref_primary_10_1007_s10845_025_02581_w
crossref_primary_10_1016_j_aei_2025_103168
crossref_primary_10_1115_1_4069117
Cites_doi 10.1016/S0166-4115(08)62386-9
10.1108/01439910910994605
10.1016/j.procir.2018.02.028
10.1145/3267782.3267921
10.1016/j.cag.2015.10.013
10.1016/j.ifacol.2018.11.517
10.1145/3301275.3302326
10.1016/j.promfg.2018.01.022
10.1145/3056540.3076190
10.3390/soc6030020
10.1109/CVPR.2018.00211
10.1007/s00464-016-4800-6
10.1016/j.rcim.2021.102234
10.1145/3491102.3517719
10.1016/j.rcim.2019.101820
10.1109/FIE.2012.6462312
10.1016/j.promfg.2020.04.043
10.1145/3371382.3378300
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.rcim.2024.102770
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1879-2537
ExternalDocumentID 10_1016_j_rcim_2024_102770
S0736584524000565
GrantInformation_xml – fundername: European Union’s Horizon 2020 Research and Innovation programme
  grantid: 101016681
  funderid: http://dx.doi.org/10.13039/501100007601
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFSI
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PZZ
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-43e28c0b641e2565b8cd245609a3136a20b665ac76a273003f6fccf7db30833d3
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001229669000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0736-5845
IngestDate Sat Nov 29 03:56:53 EST 2025
Tue Nov 18 22:34:23 EST 2025
Tue Jun 18 08:51:37 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Augmented reality
SME future
Robot programming
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-43e28c0b641e2565b8cd245609a3136a20b665ac76a273003f6fccf7db30833d3
ORCID 0000-0002-7479-710X
0000-0002-7495-6932
0000-0001-5798-5435
0000-0002-4728-8916
ParticipantIDs crossref_citationtrail_10_1016_j_rcim_2024_102770
crossref_primary_10_1016_j_rcim_2024_102770
elsevier_sciencedirect_doi_10_1016_j_rcim_2024_102770
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationTitle Robotics and computer-integrated manufacturing
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References J. Brooke, et al., Sus-a quick and dirty usability scale, in: Usability Evaluation in Industry, Vol. 189, 1996, pp. 4–7.
ABB (b14) 2014
Weiss, Huber, Minichberger, Ikeda (b5) 2016; 6
Blankemeyer, Wiemann, Posniak, Pregizer, Raatz (b4) 2018; 76
Taketomi, Uchiyama, Ikeda (b35) 2017; 9
S. Werrlich, K. Nitsche, G. Notni, Demand analysis for an augmented reality based assembly training, in: Proceedings of the 10th International Conference on PErvasive Technologies Related to Assistive Environments, 2017, pp. 416–422.
Yigitbas, Jovanovikj, Engels (b10) 2021
Fogli, Gargioni, Guida, Tampalini (b3) 2022; 73
Gadre, Rosen, Chien, Phillips, Tellex, Konidaris (b26) 2019
Connolly (b19) 2009
Sefidgar, Agarwal, Cakmak (b24) 2017
Terashima, Hasegawa (b36) 2017
Morar, Băluţoiu, Moldoveanu, Moldoveanu, Butean, Asavei (b8) 2020
M. Contero, J.M. Gomis, F. Naya, F. Albert, J. Martin-Gutierrez, Development of an augmented reality based remedial course to improve the spatial ability of engineering students, in: 2012 Frontiers in Education Conference Proceedings, 2012, pp. 1–5
Schmidbauer, Komenda, Schlund (b18) 2020; 45
Quintero, Li, Pan, Chan, Van der Loos, Croft (b11) 2018
R. Suzuki, A. Karim, T. Xia, H. Hedayati, N. Marquardt, Augmented reality and robotics: A survey and taxonomy for ar-enhanced human–robot interaction and robotic interfaces, in: CHI Conference on Human Factors in Computing Systems, 2022, pp. 1–33.
Ong, Yew, Thanigaivel, Nee (b12) 2020; 61
Ajaykumar, Steele, Huang (b16) 2021; 54
Paxton, Hundt, Jonathan, Guerin, Hager (b21) 2017
Mayr-Dorn, Winterer, Salomon, Hohensinger, Ramler (b22) 2021
Barsom, Graafland, Schijven (b31) 2016; 30
Insight Partners (b1) 2023
Y.S. Sefidgar, T. Weng, H. Harvey, S. Elliott, M. Cakmak, Robotist: Interactive situated tangible robot programming, in: Proceedings of the Symposium on Spatial User Interaction, 2018, pp. 141–149.
Polvi, Taketomi, Yamamoto, Dey, Sandor, Kato (b42) 2016; 55
Eschen, Kötter, Rodeck, Harnisch, Schüppstuhl (b30) 2018; 19
Scargill, Premsankar, Chen, Gorlatova (b7) 2022
Robot (b15) 2022
Rosen, Whitney, Phillips, Chien, Tompkin, Konidaris, Tellex (b29) 2020
Huang, Cakmak (b2) 2017
Feigl, Porada, Steiner, Löffler, Mutschler, Philippsen (b38) 2020
Materna, Kapinus, Beran, Smrž, Zemčík (b13) 2018
G. Ajaykumar, C.M. Huang, User needs and design opportunities in end-user robot programming, in: Companion of the 2020 ACM/IEEE International Conference on Human-Robot Interaction, 2020, pp. 93–95.
H. Liu, M. Chen, G. Zhang, H. Bao, Y. Bao, Ice-ba: Incremental, consistent and efficient bundle adjustment for visual-inertial slam, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1974–1982.
.
Hart, Staveland (b39) 1988; 52
Santos, Polvi, Taketomi, Yamamoto, Sandor, Kato (b41) 2014
Hoyos, Junaid, Afzal, Tirmizi, Leconte (b28) 2022
Nowacki, Woda (b37) 2019
Battegazzorre, Calandra, Strada, Bottino, Lamberti (b9) 2020
Y. Gao, C.M. Huang, Pati: a projection-based augmented table-top interface for robot programming, in: Proceedings of the 24th International Conference on Intelligent User Interfaces, 2019, pp. 345–355.
Alexandrova, Cakmak, Hsiao, Takayama (b23) 2014
Ostanin, Klimchik (b27) 2018; 51
Alexandrova (10.1016/j.rcim.2024.102770_b23) 2014
Materna (10.1016/j.rcim.2024.102770_b13) 2018
Huang (10.1016/j.rcim.2024.102770_b2) 2017
Yigitbas (10.1016/j.rcim.2024.102770_b10) 2021
Eschen (10.1016/j.rcim.2024.102770_b30) 2018; 19
Hart (10.1016/j.rcim.2024.102770_b39) 1988; 52
Polvi (10.1016/j.rcim.2024.102770_b42) 2016; 55
Blankemeyer (10.1016/j.rcim.2024.102770_b4) 2018; 76
Rosen (10.1016/j.rcim.2024.102770_b29) 2020
Sefidgar (10.1016/j.rcim.2024.102770_b24) 2017
Robot (10.1016/j.rcim.2024.102770_b15) 2022
Scargill (10.1016/j.rcim.2024.102770_b7) 2022
Gadre (10.1016/j.rcim.2024.102770_b26) 2019
10.1016/j.rcim.2024.102770_b17
Hoyos (10.1016/j.rcim.2024.102770_b28) 2022
10.1016/j.rcim.2024.102770_b34
10.1016/j.rcim.2024.102770_b32
10.1016/j.rcim.2024.102770_b33
Quintero (10.1016/j.rcim.2024.102770_b11) 2018
Ong (10.1016/j.rcim.2024.102770_b12) 2020; 61
Ostanin (10.1016/j.rcim.2024.102770_b27) 2018; 51
10.1016/j.rcim.2024.102770_b6
Morar (10.1016/j.rcim.2024.102770_b8) 2020
Feigl (10.1016/j.rcim.2024.102770_b38) 2020
ABB (10.1016/j.rcim.2024.102770_b14) 2014
Battegazzorre (10.1016/j.rcim.2024.102770_b9) 2020
Nowacki (10.1016/j.rcim.2024.102770_b37) 2019
Mayr-Dorn (10.1016/j.rcim.2024.102770_b22) 2021
Weiss (10.1016/j.rcim.2024.102770_b5) 2016; 6
Connolly (10.1016/j.rcim.2024.102770_b19) 2009
10.1016/j.rcim.2024.102770_b25
Schmidbauer (10.1016/j.rcim.2024.102770_b18) 2020; 45
Insight Partners (10.1016/j.rcim.2024.102770_b1) 2023
Fogli (10.1016/j.rcim.2024.102770_b3) 2022; 73
Paxton (10.1016/j.rcim.2024.102770_b21) 2017
Barsom (10.1016/j.rcim.2024.102770_b31) 2016; 30
Santos (10.1016/j.rcim.2024.102770_b41) 2014
Ajaykumar (10.1016/j.rcim.2024.102770_b16) 2021; 54
10.1016/j.rcim.2024.102770_b20
Taketomi (10.1016/j.rcim.2024.102770_b35) 2017; 9
Terashima (10.1016/j.rcim.2024.102770_b36) 2017
10.1016/j.rcim.2024.102770_b40
References_xml – volume: 73
  year: 2022
  ident: b3
  article-title: A hybrid approach to user-oriented programming of collaborative robots
  publication-title: Robot. Comput.-Integr. Manuf.
– start-page: 73
  year: 2017
  end-page: 76
  ident: b36
  article-title: A visual-slam for first person vision and mobile robots
  publication-title: 2017 Fifteenth IAPR International Conference on Machine Vision Applications
– start-page: 301
  year: 2020
  end-page: 316
  ident: b29
  article-title: Communicating robot arm motion intent through mixed reality head-mounted displays
  publication-title: Robotics Research
– volume: 45
  start-page: 398
  year: 2020
  end-page: 404
  ident: b18
  article-title: Teaching cobots in learning factories–user and usability-driven implications
  publication-title: Procedia Manuf.
– year: 2022
  ident: b15
  publication-title: The Urscript Programming Language for E-Series
– start-page: 48
  year: 2014
  end-page: 56
  ident: b23
  article-title: Robot programming by demonstration with interactive action visualizations
  publication-title: Robotics: Science and Systems
– volume: 76
  start-page: 155
  year: 2018
  end-page: 160
  ident: b4
  article-title: Intuitive robot programming using augmented reality
  publication-title: Procedia CIRP
– reference: M. Contero, J.M. Gomis, F. Naya, F. Albert, J. Martin-Gutierrez, Development of an augmented reality based remedial course to improve the spatial ability of engineering students, in: 2012 Frontiers in Education Conference Proceedings, 2012, pp. 1–5,
– start-page: 2707
  year: 2019
  end-page: 2713
  ident: b26
  article-title: End-user robot programming using mixed reality
  publication-title: 2019 International Conference on Robotics and Automation
– volume: 30
  start-page: 4174
  year: 2016
  end-page: 4183
  ident: b31
  article-title: Systematic review on the effectiveness of augmented reality applications in medical training
  publication-title: Surg. Endosc.
– volume: 19
  start-page: 156
  year: 2018
  end-page: 163
  ident: b30
  article-title: Augmented and virtual reality for inspection and maintenance processes in the aviation industry
  publication-title: Procedia Manuf.
– year: 2014
  ident: b41
  article-title: A usability scale for handheld augmented reality
– start-page: 248
  year: 2020
  end-page: 267
  ident: b9
  article-title: Evaluating the suitability of several ar devices and tools for industrial applications
  publication-title: International Conference on Augmented Reality, Virtual Reality and Computer Graphics
– reference: Y.S. Sefidgar, T. Weng, H. Harvey, S. Elliott, M. Cakmak, Robotist: Interactive situated tangible robot programming, in: Proceedings of the Symposium on Spatial User Interaction, 2018, pp. 141–149.
– volume: 52
  start-page: 139
  year: 1988
  end-page: 183
  ident: b39
  article-title: Development of nasa-tlx (task load index): Results of empirical and theoretical research
  publication-title: Adv. Psychol.
– start-page: 210
  year: 2022
  end-page: 217
  ident: b28
  article-title: Skill-based easy programming interface for industrial applications
  publication-title: 2022 IEEE/SICE International Symposium on System Integration
– start-page: 5
  year: 2021
  end-page: 12
  ident: b22
  article-title: Considerations for using block-based languages for industrial robot programming-a case study
  publication-title: 2021 IEEE/ACM 3rd International Workshop on Robotics Software Engineering
– volume: 6
  start-page: 20
  year: 2016
  ident: b5
  article-title: First application of robot teaching in an existing industry 4.0 environment: Does it really work?
  publication-title: Societies
– year: 2009
  ident: b19
  article-title: Technology and applications of abb robotstudio
  publication-title: Ind. Robot: Int. J.
– volume: 51
  start-page: 50
  year: 2018
  end-page: 55
  ident: b27
  article-title: Interactive robot programing using mixed reality
  publication-title: IFAC-PapersOnLine
– volume: 9
  start-page: 1
  year: 2017
  end-page: 11
  ident: b35
  article-title: Visual slam algorithms: A survey from 2010 to 2016
  publication-title: IPSJ Trans. Comput. Vis. Appl.
– start-page: 453
  year: 2017
  end-page: 462
  ident: b2
  article-title: Code3: A system for end-to-end programming of mobile manipulator robots for novices and experts
  publication-title: 2017 12th ACM/IEEE International Conference on Human-Robot Interaction
– volume: 54
  year: 2021
  ident: b16
  article-title: A survey on end-user robot programming
  publication-title: ACM Comput. Surv.
– reference: H. Liu, M. Chen, G. Zhang, H. Bao, Y. Bao, Ice-ba: Incremental, consistent and efficient bundle adjustment for visual-inertial slam, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1974–1982.
– start-page: 631
  year: 2021
  end-page: 651
  ident: b10
  article-title: Simplifying robot programming using augmented reality and end-user development
  publication-title: IFIP Conference on Human-Computer Interaction
– reference: G. Ajaykumar, C.M. Huang, User needs and design opportunities in end-user robot programming, in: Companion of the 2020 ACM/IEEE International Conference on Human-Robot Interaction, 2020, pp. 93–95.
– reference: J. Brooke, et al., Sus-a quick and dirty usability scale, in: Usability Evaluation in Industry, Vol. 189, 1996, pp. 4–7.
– start-page: 358
  year: 2019
  end-page: 370
  ident: b37
  article-title: Capabilities of arcore and arkit platforms for ar/vr applications
  publication-title: International Conference on Dependability and Complex Systems
– volume: 55
  start-page: 33
  year: 2016
  end-page: 43
  ident: b42
  article-title: Slidar: A 3d positioning method for slam-based handheld augmented reality
  publication-title: Comput. Graph.
– reference: .
– start-page: 307
  year: 2020
  end-page: 318
  ident: b38
  article-title: Localization limitations of arcore, arkit, and hololens in dynamic large-scale industry environments
  publication-title: Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - GRAPP
– start-page: 473
  year: 2017
  end-page: 482
  ident: b24
  article-title: Situated tangible robot programming
  publication-title: 2017 12th ACM/IEEE International Conference on Human-Robot Interaction
– reference: R. Suzuki, A. Karim, T. Xia, H. Hedayati, N. Marquardt, Augmented reality and robotics: A survey and taxonomy for ar-enhanced human–robot interaction and robotic interfaces, in: CHI Conference on Human Factors in Computing Systems, 2022, pp. 1–33.
– volume: 61
  year: 2020
  ident: b12
  article-title: Augmented reality-assisted robot programming system for industrial applications
  publication-title: Robot. Comput.-Integr. Manuf.
– reference: Y. Gao, C.M. Huang, Pati: a projection-based augmented table-top interface for robot programming, in: Proceedings of the 24th International Conference on Intelligent User Interfaces, 2019, pp. 345–355.
– year: 2014
  ident: b14
  article-title: Technical Reference Manual: Rapid Instructions, Functions and Data Types
– start-page: 24
  year: 2022
  end-page: 29
  ident: b7
  article-title: Here to stay: A quantitative comparison of virtual object stability in markerless mobile ar
  publication-title: 2022 2nd International Workshop on Cyber-Physical-Human System Design and Implementation
– start-page: 1
  year: 2023
  end-page: 215
  ident: b1
  article-title: Collaborative Robots Market Growth Report & Analysis by 2030
– start-page: 80
  year: 2018
  end-page: 87
  ident: b13
  article-title: Interactive spatial augmented reality in collaborative robot programming: User experience evaluation
  publication-title: 2018 27th IEEE International Symposium on Robot and Human Interactive Communication
– start-page: 1838
  year: 2018
  end-page: 1844
  ident: b11
  article-title: Robot programming through augmented trajectories in augmented reality
  publication-title: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
– start-page: 1
  year: 2020
  end-page: 5
  ident: b8
  article-title: Evaluation of the arcore indoor localization technology
  publication-title: 2020 19th RoEduNet Conference: Networking in Education and Research
– start-page: 564
  year: 2017
  end-page: 571
  ident: b21
  article-title: Costar: Instructing collaborative robots with behavior trees and vision
  publication-title: 2017 IEEE International Conference on Robotics and Automation
– reference: S. Werrlich, K. Nitsche, G. Notni, Demand analysis for an augmented reality based assembly training, in: Proceedings of the 10th International Conference on PErvasive Technologies Related to Assistive Environments, 2017, pp. 416–422.
– volume: 52
  start-page: 139
  year: 1988
  ident: 10.1016/j.rcim.2024.102770_b39
  article-title: Development of nasa-tlx (task load index): Results of empirical and theoretical research
  publication-title: Adv. Psychol.
  doi: 10.1016/S0166-4115(08)62386-9
– volume: 54
  year: 2021
  ident: 10.1016/j.rcim.2024.102770_b16
  article-title: A survey on end-user robot programming
  publication-title: ACM Comput. Surv.
– start-page: 564
  year: 2017
  ident: 10.1016/j.rcim.2024.102770_b21
  article-title: Costar: Instructing collaborative robots with behavior trees and vision
– year: 2022
  ident: 10.1016/j.rcim.2024.102770_b15
– start-page: 73
  year: 2017
  ident: 10.1016/j.rcim.2024.102770_b36
  article-title: A visual-slam for first person vision and mobile robots
– start-page: 358
  year: 2019
  ident: 10.1016/j.rcim.2024.102770_b37
  article-title: Capabilities of arcore and arkit platforms for ar/vr applications
– start-page: 24
  year: 2022
  ident: 10.1016/j.rcim.2024.102770_b7
  article-title: Here to stay: A quantitative comparison of virtual object stability in markerless mobile ar
– start-page: 5
  year: 2021
  ident: 10.1016/j.rcim.2024.102770_b22
  article-title: Considerations for using block-based languages for industrial robot programming-a case study
– start-page: 2707
  year: 2019
  ident: 10.1016/j.rcim.2024.102770_b26
  article-title: End-user robot programming using mixed reality
– year: 2009
  ident: 10.1016/j.rcim.2024.102770_b19
  article-title: Technology and applications of abb robotstudio
  publication-title: Ind. Robot: Int. J.
  doi: 10.1108/01439910910994605
– volume: 76
  start-page: 155
  year: 2018
  ident: 10.1016/j.rcim.2024.102770_b4
  article-title: Intuitive robot programming using augmented reality
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2018.02.028
– year: 2014
  ident: 10.1016/j.rcim.2024.102770_b14
– ident: 10.1016/j.rcim.2024.102770_b25
  doi: 10.1145/3267782.3267921
– start-page: 631
  year: 2021
  ident: 10.1016/j.rcim.2024.102770_b10
  article-title: Simplifying robot programming using augmented reality and end-user development
– start-page: 248
  year: 2020
  ident: 10.1016/j.rcim.2024.102770_b9
  article-title: Evaluating the suitability of several ar devices and tools for industrial applications
– start-page: 80
  year: 2018
  ident: 10.1016/j.rcim.2024.102770_b13
  article-title: Interactive spatial augmented reality in collaborative robot programming: User experience evaluation
– ident: 10.1016/j.rcim.2024.102770_b40
– volume: 55
  start-page: 33
  year: 2016
  ident: 10.1016/j.rcim.2024.102770_b42
  article-title: Slidar: A 3d positioning method for slam-based handheld augmented reality
  publication-title: Comput. Graph.
  doi: 10.1016/j.cag.2015.10.013
– start-page: 453
  year: 2017
  ident: 10.1016/j.rcim.2024.102770_b2
  article-title: Code3: A system for end-to-end programming of mobile manipulator robots for novices and experts
– volume: 51
  start-page: 50
  year: 2018
  ident: 10.1016/j.rcim.2024.102770_b27
  article-title: Interactive robot programing using mixed reality
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.11.517
– ident: 10.1016/j.rcim.2024.102770_b20
  doi: 10.1145/3301275.3302326
– volume: 19
  start-page: 156
  year: 2018
  ident: 10.1016/j.rcim.2024.102770_b30
  article-title: Augmented and virtual reality for inspection and maintenance processes in the aviation industry
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2018.01.022
– start-page: 1
  year: 2023
  ident: 10.1016/j.rcim.2024.102770_b1
– ident: 10.1016/j.rcim.2024.102770_b32
  doi: 10.1145/3056540.3076190
– volume: 6
  start-page: 20
  year: 2016
  ident: 10.1016/j.rcim.2024.102770_b5
  article-title: First application of robot teaching in an existing industry 4.0 environment: Does it really work?
  publication-title: Societies
  doi: 10.3390/soc6030020
– ident: 10.1016/j.rcim.2024.102770_b34
  doi: 10.1109/CVPR.2018.00211
– start-page: 307
  year: 2020
  ident: 10.1016/j.rcim.2024.102770_b38
  article-title: Localization limitations of arcore, arkit, and hololens in dynamic large-scale industry environments
– volume: 30
  start-page: 4174
  year: 2016
  ident: 10.1016/j.rcim.2024.102770_b31
  article-title: Systematic review on the effectiveness of augmented reality applications in medical training
  publication-title: Surg. Endosc.
  doi: 10.1007/s00464-016-4800-6
– start-page: 1
  year: 2020
  ident: 10.1016/j.rcim.2024.102770_b8
  article-title: Evaluation of the arcore indoor localization technology
– start-page: 1838
  year: 2018
  ident: 10.1016/j.rcim.2024.102770_b11
  article-title: Robot programming through augmented trajectories in augmented reality
– volume: 73
  year: 2022
  ident: 10.1016/j.rcim.2024.102770_b3
  article-title: A hybrid approach to user-oriented programming of collaborative robots
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2021.102234
– ident: 10.1016/j.rcim.2024.102770_b33
  doi: 10.1145/3491102.3517719
– start-page: 48
  year: 2014
  ident: 10.1016/j.rcim.2024.102770_b23
  article-title: Robot programming by demonstration with interactive action visualizations
– volume: 61
  year: 2020
  ident: 10.1016/j.rcim.2024.102770_b12
  article-title: Augmented reality-assisted robot programming system for industrial applications
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2019.101820
– ident: 10.1016/j.rcim.2024.102770_b6
  doi: 10.1109/FIE.2012.6462312
– volume: 45
  start-page: 398
  year: 2020
  ident: 10.1016/j.rcim.2024.102770_b18
  article-title: Teaching cobots in learning factories–user and usability-driven implications
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2020.04.043
– ident: 10.1016/j.rcim.2024.102770_b17
  doi: 10.1145/3371382.3378300
– start-page: 301
  year: 2020
  ident: 10.1016/j.rcim.2024.102770_b29
  article-title: Communicating robot arm motion intent through mixed reality head-mounted displays
– start-page: 210
  year: 2022
  ident: 10.1016/j.rcim.2024.102770_b28
  article-title: Skill-based easy programming interface for industrial applications
– volume: 9
  start-page: 1
  year: 2017
  ident: 10.1016/j.rcim.2024.102770_b35
  article-title: Visual slam algorithms: A survey from 2010 to 2016
  publication-title: IPSJ Trans. Comput. Vis. Appl.
– year: 2014
  ident: 10.1016/j.rcim.2024.102770_b41
– start-page: 473
  year: 2017
  ident: 10.1016/j.rcim.2024.102770_b24
  article-title: Situated tangible robot programming
SSID ssj0002453
Score 2.421595
Snippet The market of collaborative robots is thriving due to their increasing affordability. The ability to program a collaborative robot without requiring a highly...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102770
SubjectTerms Augmented reality
Robot programming
SME future
Title Augmented reality spatial programming paradigm applied to end-user robot programming
URI https://dx.doi.org/10.1016/j.rcim.2024.102770
Volume 89
WOSCitedRecordID wos001229669000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2537
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002453
  issn: 0736-5845
  databaseCode: AIEXJ
  dateStart: 19960301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELVKlwMc-FhALF_ygT1VRk2cxMmxuywCDisEBfUWxY6z6u42rdKkWvFX-LPMxHYSLWgFSFyiKHHqyvM6eR3PmyHkdc4LgA0wt0BmigW-0CxRRc6kyoQE-wdcq7bZhDg9jReL5NNo9MNpYXaXoizjq6tk819NDdfA2Cid_Qtzdx8KF-AcjA5HMDsc_8jws-asLbSJshRDsreYNY2KK5OLtWoF6FmV5cuz1SSzNBQ4qC5zhkGLSbWW63o4fEhhP-NNV9tZ2aYQrCs7kWNCbIN6iVYA2Tn0bLMsm22Xqd8ldhzpysRgv7V79m9rpLfJ0XeA6q4Pl7dhy3YjBf1kO6KXGGUr2Rweh4czT1_0svlhPMMPusw4G2RzQps-qwl9oeARA65kNsC18dWxSJgfmpoxzpmbfkS_vBdMiOL8TaWWWH7AD7BkhTAtS67V2_6Cc-FUmF0L9DC8RfZ8ESbxmOzNPpwsPnYvej8wRU7dd7OaLJM-eH2m3_OeAZeZPyD37J8QOjPgeUhGutwn912DD2r9_T65O6hW-YjMO2RRiyxqkUUHUKEOWdQii9Zr6pBFW2QNhz8mX9-dzI_fM9uUgyk-ndYMfrx-rKYyCjwNdDmUscpx83yaZNzjUebDrSjMlIBT7IXAi6hQqhC55MD2ec6fkHG5LvVTQuMC28MK8BK5DEIZxEkcRzKCA9eex_0D4rklS5WtWI-NUy5Tl5p4nuIyp7jMqVnmAzLpntmYei03jg6dJVLLOA2TTAE4Nzz37B-fe07u9JB_QcZ11eiX5Lba1ctt9cri6yey-6YQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Augmented+reality+spatial+programming+paradigm+applied+to+end-user+robot+programming&rft.jtitle=Robotics+and+computer-integrated+manufacturing&rft.au=Kapinus%2C+Michal&rft.au=Beran%2C+V%C3%ADt%C4%9Bzslav&rft.au=Materna%2C+Zden%C4%9Bk&rft.au=Bambu%C5%A1ek%2C+Daniel&rft.date=2024-10-01&rft.pub=Elsevier+Ltd&rft.issn=0736-5845&rft.eissn=1879-2537&rft.volume=89&rft_id=info:doi/10.1016%2Fj.rcim.2024.102770&rft.externalDocID=S0736584524000565
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-5845&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-5845&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-5845&client=summon