Sidon sets, thin sets, and the nonlinearity of vectorial Boolean functions
The vectorial nonlinearity of a vector-valued function is its distance from the set of affine functions. In 2017, Liu, Mesnager, and Chen conjectured a general upper bound for the vectorial linearity. Recently, Carlet established a lower bound in terms of differential uniformity. In this paper, we i...
Uloženo v:
| Vydáno v: | Journal of combinatorial theory. Series A Ročník 212; s. 106001 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.05.2025
|
| Témata: | |
| ISSN: | 0097-3165 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The vectorial nonlinearity of a vector-valued function is its distance from the set of affine functions. In 2017, Liu, Mesnager, and Chen conjectured a general upper bound for the vectorial linearity. Recently, Carlet established a lower bound in terms of differential uniformity. In this paper, we improve Carlet's lower bound. Our approach is based on the fact that the level sets of a vectorial Boolean function are thin sets. In particular, level sets of APN functions are Sidon sets, hence the Liu-Mesnager-Chen conjecture predicts that in F2n, there should be Sidon sets of size at least 2n/2+1 for all n. This paper provides an overview of the known large Sidon sets in F2n, and examines the completeness of the large Sidon sets derived from hyperbolas and ellipses of the finite affine plane. |
|---|---|
| AbstractList | The vectorial nonlinearity of a vector-valued function is its distance from the set of affine functions. In 2017, Liu, Mesnager, and Chen conjectured a general upper bound for the vectorial linearity. Recently, Carlet established a lower bound in terms of differential uniformity. In this paper, we improve Carlet's lower bound. Our approach is based on the fact that the level sets of a vectorial Boolean function are thin sets. In particular, level sets of APN functions are Sidon sets, hence the Liu-Mesnager-Chen conjecture predicts that in F2n, there should be Sidon sets of size at least 2n/2+1 for all n. This paper provides an overview of the known large Sidon sets in F2n, and examines the completeness of the large Sidon sets derived from hyperbolas and ellipses of the finite affine plane. |
| ArticleNumber | 106001 |
| Author | Nagy, Gábor P. |
| Author_xml | – sequence: 1 givenname: Gábor P. orcidid: 0000-0002-9558-4197 surname: Nagy fullname: Nagy, Gábor P. email: nagyg@math.u-szeged.hu organization: Institute of Mathematics, Budapest University of Technology and Economics Műegyetem rkp 3, H-1111 Budapest, Hungary |
| BookMark | eNp9kMtKAzEUhrOoYFt9AVd5AKeeXGcKbrR4peBCXYdMksEMYyJJLPTtnaG6cdHVucD3c863QLMQg0PogsCKAJFX_ao3Ra8oUD4uJACZoTnAuq4YkeIULXLuAYAKwufo-dXbGHB2JV_i8uH_Wh3sODo8Zg8-OJ182ePY4Z0zJSavB3wb4-B0wN13MMXHkM_QSaeH7M5_6xK939-9bR6r7cvD0-ZmWxkGUCpOx0oYYYIyy9qmdrVswThpmjWHVljRMktot9ailoIaQbmVvNFtyztKiWZL1BxyTYo5J9cp44ueTihJ-0ERUJMH1avJg5o8qIOHEaX_0K_kP3XaH4euD5Abn9p5l1Q23gXjrE-jDWWjP4b_AEsMelM |
| CitedBy_id | crossref_primary_10_1007_s12095_025_00808_4 |
| Cites_doi | 10.1016/S0021-9800(69)80038-4 10.1109/TIT.2017.2757938 10.1007/s12095-015-0176-z 10.3934/amc.2023054 10.1112/jlms/s1-16.4.212 10.1007/BF00630563 10.1007/s10801-020-00988-7 10.18273/revint.v33n2-2015006 10.1109/18.52487 10.1023/A:1008344232130 10.1109/TIT.2017.2750663 10.1515/9781400847419 10.1016/S0195-6698(85)80001-9 10.3934/amc.2021064 10.1080/00029890.2023.2176667 10.1109/18.133262 10.1016/j.ffa.2018.12.001 10.1137/21M1454663 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Inc. |
| Copyright_xml | – notice: 2024 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.jcta.2024.106001 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| ExternalDocumentID | 10_1016_j_jcta_2024_106001 S0097316524001407 |
| GrantInformation_xml | – fundername: National Research, Development and Innovation Fund grantid: SNN 132625 funderid: https://doi.org/10.13039/501100012550 – fundername: Program of Excellence grantid: TKP2021-NVA-02 |
| GroupedDBID | --K --M --Z -DZ -~X .DC .~1 0R~ 186 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AATTM AAXKI AAXUO ABAOU ABDPE ABEFU ABFNM ABMAC ABWVN ABXDB ACDAQ ACGFS ACNCT ACRLP ACRPL ADBBV ADEZE ADFGL ADIYS ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AENEX AETEA AEXQZ AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG COF CS3 D-I DM4 DU5 EBS EFBJH EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ H~9 IHE IXB J1W KOM LG5 M25 M41 MCRUF MHUIS MO0 MVM N9A O-L O9- OAUVE OHT OK1 OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SSH SSW SSZ T5K TN5 UPT UQL WH7 WUQ XJT XPP YQT ZCG ZMT ZU3 ~G- 9DU AAYWO AAYXX ACLOT ACVFH ADCNI ADXHL AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c300t-42c301313523d3b87e76b0ce6c8940b5d5b3d12f9a57652c524d648abb4f221a3 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001392239300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0097-3165 |
| IngestDate | Sat Nov 29 03:49:51 EST 2025 Tue Nov 18 21:32:35 EST 2025 Sun Apr 06 06:55:02 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | APN functions Hamming distance Sidon sets Vectorial Boolean functions Error correcting codes |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-42c301313523d3b87e76b0ce6c8940b5d5b3d12f9a57652c524d648abb4f221a3 |
| ORCID | 0000-0002-9558-4197 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_jcta_2024_106001 crossref_primary_10_1016_j_jcta_2024_106001 elsevier_sciencedirect_doi_10_1016_j_jcta_2024_106001 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-01 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of combinatorial theory. Series A |
| PublicationYear | 2025 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Matsui (br0250) 1994 Charpin, Peng (br0120) 2019; 56 C. Carlet, Private communication, Dec. 2022. Carlet, Mesnager (br0100) 2022; 55 Budaghyan (br0040) 2018; 64 Lindström (br0220) 1969; 6 Liu, Mesnager, Chen (br0230) 2017; 9 Erdös, Turán (br0170) 1941; 16 Caicedo, Martos, Trujillo (br0050) 2015; 33 Czerwinski, Pott (br0160) 2024; 18 Hughes, Piper (br0210) 1973; vol. 6 Chen (br0130) 1991; 37 I. Czerwinski, A. Pott, Private communication, Nov. 2024. Grassl (br0190) 2007 Carlet, Charpin, Zinoviev (br0090) 1998; 15 Gorodilova (br0180) 2022; 19 Hirschfeld, Korchmáros, Torres (br0200) 2008 Redman, Rose, Walker (br0260) 2022; 36 Biham, Shamir (br0030) 1991; 4 Balogh, Füredi, Roy (br0020) 2023; 130 van der Vlugt (br0270) 1990; 36 Carlet (br0080) 2022 Xu (br0280) 2018; 64 Carlet (br0060) 2021 MacWilliams, Sloane (br0240) 1977; vol. 16 Carlet, Picek (br0110) 2023; 17 Czerwinski (br0140) 2020 Babai, Sós (br0010) 1985; 6 Xu (10.1016/j.jcta.2024.106001_br0280) 2018; 64 Gorodilova (10.1016/j.jcta.2024.106001_br0180) 2022; 19 Matsui (10.1016/j.jcta.2024.106001_br0250) 1994 Budaghyan (10.1016/j.jcta.2024.106001_br0040) 2018; 64 Czerwinski (10.1016/j.jcta.2024.106001_br0140) 2020 Charpin (10.1016/j.jcta.2024.106001_br0120) 2019; 56 Erdös (10.1016/j.jcta.2024.106001_br0170) 1941; 16 Czerwinski (10.1016/j.jcta.2024.106001_br0160) 2024; 18 Babai (10.1016/j.jcta.2024.106001_br0010) 1985; 6 Redman (10.1016/j.jcta.2024.106001_br0260) 2022; 36 Carlet (10.1016/j.jcta.2024.106001_br0110) 2023; 17 Lindström (10.1016/j.jcta.2024.106001_br0220) 1969; 6 Caicedo (10.1016/j.jcta.2024.106001_br0050) 2015; 33 Carlet (10.1016/j.jcta.2024.106001_br0090) 1998; 15 Hirschfeld (10.1016/j.jcta.2024.106001_br0200) 2008 Biham (10.1016/j.jcta.2024.106001_br0030) 1991; 4 Liu (10.1016/j.jcta.2024.106001_br0230) 2017; 9 10.1016/j.jcta.2024.106001_br0070 Chen (10.1016/j.jcta.2024.106001_br0130) 1991; 37 Grassl (10.1016/j.jcta.2024.106001_br0190) Carlet (10.1016/j.jcta.2024.106001_br0060) 2021 10.1016/j.jcta.2024.106001_br0150 Carlet (10.1016/j.jcta.2024.106001_br0080) 2022 van der Vlugt (10.1016/j.jcta.2024.106001_br0270) 1990; 36 MacWilliams (10.1016/j.jcta.2024.106001_br0240) 1977; vol. 16 Balogh (10.1016/j.jcta.2024.106001_br0020) 2023; 130 Carlet (10.1016/j.jcta.2024.106001_br0100) 2022; 55 Hughes (10.1016/j.jcta.2024.106001_br0210) 1973; vol. 6 |
| References_xml | – volume: 4 start-page: 3 year: 1991 end-page: 72 ident: br0030 article-title: Differential cryptanalysis of DES-like cryptosystems publication-title: J. Cryptol. – year: 2007 ident: br0190 article-title: Bounds on the minimum distance of linear codes and quantum codes – volume: 64 start-page: 367 year: 2018 end-page: 383 ident: br0280 article-title: Classification of bent monomials, constructions of bent multinomials and upper bounds on the nonlinearity of vectorial functions publication-title: IEEE Trans. Inf. Theory – volume: 33 start-page: 161 year: 2015 end-page: 172 ident: br0050 article-title: -Golomb rulers publication-title: Rev. Integr. Temas Mat. – volume: 36 start-page: 397 year: 1990 end-page: 398 ident: br0270 article-title: The true dimension of certain binary Goppa codes publication-title: IEEE Trans. Inf. Theory – reference: C. Carlet, Private communication, Dec. 2022. – volume: 55 start-page: 43 year: 2022 end-page: 59 ident: br0100 article-title: On those multiplicative subgroups of publication-title: J. Algebraic Comb. – start-page: 386 year: 1994 end-page: 397 ident: br0250 article-title: Linear cryptanalysis method for DES cipher publication-title: Advances in Cryptology — EUROCRYPT '93 – volume: vol. 6 year: 1973 ident: br0210 article-title: Projective Planes publication-title: Graduate Texts in Mathematics – volume: 17 start-page: 1507 year: 2023 end-page: 1525 ident: br0110 article-title: On the exponents of APN power functions and Sidon sets, sum-free sets, and Dickson polynomials publication-title: Adv. Math. Commun. – volume: 56 start-page: 188 year: 2019 end-page: 208 ident: br0120 article-title: New links between nonlinearity and differential uniformity publication-title: Finite Fields Appl. – volume: 64 start-page: 4399 year: 2018 end-page: 4411 ident: br0040 article-title: On upper bounds for algebraic degrees of APN functions publication-title: IEEE Trans. Inf. Theory – volume: 36 start-page: 1861 year: 2022 end-page: 1867 ident: br0260 article-title: A small maximal Sidon set in publication-title: SIAM J. Discrete Math. – volume: vol. 16 year: 1977 ident: br0240 article-title: The Theory of Error-Correcting Codes publication-title: North-Holland Mathematical Library – volume: 15 start-page: 125 year: 1998 end-page: 156 ident: br0090 article-title: Codes, bent functions and permutations suitable for DES-like cryptosystems publication-title: Des. Codes Cryptogr. – volume: 6 start-page: 402 year: 1969 end-page: 407 ident: br0220 article-title: Determination of two vectors from the sum publication-title: J. Comb. Theory – year: 2021 ident: br0060 article-title: Boolean Functions for Cryptography and Coding Theory – year: 2008 ident: br0200 article-title: Algebraic Curves over a Finite Field publication-title: Princeton Series in Applied Mathematics – volume: 9 start-page: 345 year: 2017 end-page: 361 ident: br0230 article-title: On the nonlinearity of S-boxes and linear codes publication-title: Cryptogr. Commun. – volume: 16 start-page: 212 year: 1941 end-page: 215 ident: br0170 article-title: On a problem of Sidon in additive number theory, and on some related problems publication-title: J. Lond. Math. Soc. – volume: 37 start-page: 1429 year: 1991 end-page: 1432 ident: br0130 article-title: Construction of some binary linear codes of minimum distance five publication-title: IEEE Trans. Inf. Theory – start-page: 243 year: 2022 end-page: 254 ident: br0080 article-title: On APN functions whose graphs are maximal Sidon sets publication-title: LATIN 2022: Theoretical Informatics – reference: I. Czerwinski, A. Pott, Private communication, Nov. 2024. – volume: 6 start-page: 101 year: 1985 end-page: 114 ident: br0010 article-title: Sidon sets in groups and induced subgraphs of Cayley graphs publication-title: Eur. J. Comb. – volume: 18 start-page: 549 year: 2024 end-page: 566 ident: br0160 article-title: Sidon sets, sum-free sets and linear codes publication-title: Adv. Math. Commun. – volume: 130 start-page: 437 year: 2023 end-page: 445 ident: br0020 article-title: An upper bound on the size of Sidon sets publication-title: Am. Math. Mon. – year: 2020 ident: br0140 article-title: On the minimal value set size of APN functions – volume: 19 year: 2022 ident: br0180 article-title: An overview of the eight international Olympiad in cryptography “Non-Stop University CRYPTO” publication-title: Sib. Èlektron. Mat. Izv. – volume: 6 start-page: 402 year: 1969 ident: 10.1016/j.jcta.2024.106001_br0220 article-title: Determination of two vectors from the sum publication-title: J. Comb. Theory doi: 10.1016/S0021-9800(69)80038-4 – volume: 19 issue: 1 year: 2022 ident: 10.1016/j.jcta.2024.106001_br0180 article-title: An overview of the eight international Olympiad in cryptography “Non-Stop University CRYPTO” publication-title: Sib. Èlektron. Mat. Izv. – volume: 64 start-page: 4399 issue: 6 year: 2018 ident: 10.1016/j.jcta.2024.106001_br0040 article-title: On upper bounds for algebraic degrees of APN functions publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2017.2757938 – volume: 9 start-page: 345 issue: 3 year: 2017 ident: 10.1016/j.jcta.2024.106001_br0230 article-title: On the nonlinearity of S-boxes and linear codes publication-title: Cryptogr. Commun. doi: 10.1007/s12095-015-0176-z – volume: vol. 16 year: 1977 ident: 10.1016/j.jcta.2024.106001_br0240 article-title: The Theory of Error-Correcting Codes – volume: 18 start-page: 549 issue: 2 year: 2024 ident: 10.1016/j.jcta.2024.106001_br0160 article-title: Sidon sets, sum-free sets and linear codes publication-title: Adv. Math. Commun. doi: 10.3934/amc.2023054 – volume: 16 start-page: 212 year: 1941 ident: 10.1016/j.jcta.2024.106001_br0170 article-title: On a problem of Sidon in additive number theory, and on some related problems publication-title: J. Lond. Math. Soc. doi: 10.1112/jlms/s1-16.4.212 – year: 2021 ident: 10.1016/j.jcta.2024.106001_br0060 – volume: 4 start-page: 3 issue: 1 year: 1991 ident: 10.1016/j.jcta.2024.106001_br0030 article-title: Differential cryptanalysis of DES-like cryptosystems publication-title: J. Cryptol. doi: 10.1007/BF00630563 – volume: 55 start-page: 43 issue: 1 year: 2022 ident: 10.1016/j.jcta.2024.106001_br0100 article-title: On those multiplicative subgroups of F2n⁎ which are Sidon sets and/or sum-free sets publication-title: J. Algebraic Comb. doi: 10.1007/s10801-020-00988-7 – volume: 33 start-page: 161 issue: 2 year: 2015 ident: 10.1016/j.jcta.2024.106001_br0050 article-title: g-Golomb rulers publication-title: Rev. Integr. Temas Mat. doi: 10.18273/revint.v33n2-2015006 – volume: 36 start-page: 397 issue: 2 year: 1990 ident: 10.1016/j.jcta.2024.106001_br0270 article-title: The true dimension of certain binary Goppa codes publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.52487 – start-page: 243 year: 2022 ident: 10.1016/j.jcta.2024.106001_br0080 article-title: On APN functions whose graphs are maximal Sidon sets – volume: 15 start-page: 125 issue: 2 year: 1998 ident: 10.1016/j.jcta.2024.106001_br0090 article-title: Codes, bent functions and permutations suitable for DES-like cryptosystems publication-title: Des. Codes Cryptogr. doi: 10.1023/A:1008344232130 – volume: 64 start-page: 367 issue: 1 year: 2018 ident: 10.1016/j.jcta.2024.106001_br0280 article-title: Classification of bent monomials, constructions of bent multinomials and upper bounds on the nonlinearity of vectorial functions publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2017.2750663 – year: 2008 ident: 10.1016/j.jcta.2024.106001_br0200 article-title: Algebraic Curves over a Finite Field doi: 10.1515/9781400847419 – ident: 10.1016/j.jcta.2024.106001_br0150 – ident: 10.1016/j.jcta.2024.106001_br0190 – volume: 6 start-page: 101 issue: 2 year: 1985 ident: 10.1016/j.jcta.2024.106001_br0010 article-title: Sidon sets in groups and induced subgraphs of Cayley graphs publication-title: Eur. J. Comb. doi: 10.1016/S0195-6698(85)80001-9 – year: 2020 ident: 10.1016/j.jcta.2024.106001_br0140 – volume: 17 start-page: 1507 issue: 6 year: 2023 ident: 10.1016/j.jcta.2024.106001_br0110 article-title: On the exponents of APN power functions and Sidon sets, sum-free sets, and Dickson polynomials publication-title: Adv. Math. Commun. doi: 10.3934/amc.2021064 – volume: 130 start-page: 437 issue: 5 year: 2023 ident: 10.1016/j.jcta.2024.106001_br0020 article-title: An upper bound on the size of Sidon sets publication-title: Am. Math. Mon. doi: 10.1080/00029890.2023.2176667 – volume: vol. 6 year: 1973 ident: 10.1016/j.jcta.2024.106001_br0210 article-title: Projective Planes – start-page: 386 year: 1994 ident: 10.1016/j.jcta.2024.106001_br0250 article-title: Linear cryptanalysis method for DES cipher – volume: 37 start-page: 1429 issue: 5 year: 1991 ident: 10.1016/j.jcta.2024.106001_br0130 article-title: Construction of some binary linear codes of minimum distance five publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.133262 – ident: 10.1016/j.jcta.2024.106001_br0070 – volume: 56 start-page: 188 year: 2019 ident: 10.1016/j.jcta.2024.106001_br0120 article-title: New links between nonlinearity and differential uniformity publication-title: Finite Fields Appl. doi: 10.1016/j.ffa.2018.12.001 – volume: 36 start-page: 1861 issue: 3 year: 2022 ident: 10.1016/j.jcta.2024.106001_br0260 article-title: A small maximal Sidon set in Z2n publication-title: SIAM J. Discrete Math. doi: 10.1137/21M1454663 |
| SSID | ssj0002514 |
| Score | 2.3752594 |
| Snippet | The vectorial nonlinearity of a vector-valued function is its distance from the set of affine functions. In 2017, Liu, Mesnager, and Chen conjectured a general... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 106001 |
| SubjectTerms | APN functions Error correcting codes Hamming distance Sidon sets Vectorial Boolean functions |
| Title | Sidon sets, thin sets, and the nonlinearity of vectorial Boolean functions |
| URI | https://dx.doi.org/10.1016/j.jcta.2024.106001 |
| Volume | 212 |
| WOSCitedRecordID | wos001392239300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0097-3165 databaseCode: AIEXJ dateStart: 20211211 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0002514 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NS8MwFA86PehB_MRvcvCmHW2atOlRRVHBIaiwW0maDDfGJlsd87_3pUnb-YkevPQjNGnIL31579eX9xA60kpIlsiOl4U08ijo9B6YQdITmiitJA19LotkE3Grxdvt5M6lVRwX6QTiwYBPp8nzv0INZQC22Tr7B7irRqEArgF0OALscPwV8PddBYiOdV4glD9165vSW3Jg42OIkfPHmBTUveHOz4bDvuHmzXJXU3mflVfoOJjUwtUqdkO-No3gAcO7pkdbwm2EKX7HBzDdju-aszwDYbVXXyk7E8No2swOpewkzgfaSj8wL31b5ZNgthxBr9nLchPtidBm_fD7KNgfVqfKZ7B0R-ulpo3UtJHaNubRAolZwhto4fT6on1TrcTExXYve-42TVn_vo89-VoxmVE2HlbRihtofGrRXUNzerCOlm-rELvjDXRT4IwNtCfYoOwuAWO41XgWYzzs4Apj7DDGFcab6PHy4uH8ynOJMeCL8v3cowTOQRiA8hyqUPJYx5H0Mx1lPKG-ZIrJUAWkkwiwJhnJGKEqolxISTuEBCLcQg3ohd5GmCegriifKkMASq6EVhw03AxKIhYKvYOCclTSzEWNN8lL-un3eOyg46rOs42Z8uPTrBzs1Gl9VptLYe78UG_3T2_ZQ0v1pN5HjXz0og_QYjbJu-PRoZs4b4AEdO4 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sidon+sets%2C+thin+sets%2C+and+the+nonlinearity+of+vectorial+Boolean+functions&rft.jtitle=Journal+of+combinatorial+theory.+Series+A&rft.au=Nagy%2C+G%C3%A1bor+P.&rft.date=2025-05-01&rft.issn=0097-3165&rft.volume=212&rft.spage=106001&rft_id=info:doi/10.1016%2Fj.jcta.2024.106001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcta_2024_106001 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0097-3165&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0097-3165&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0097-3165&client=summon |