Sidon sets, thin sets, and the nonlinearity of vectorial Boolean functions

The vectorial nonlinearity of a vector-valued function is its distance from the set of affine functions. In 2017, Liu, Mesnager, and Chen conjectured a general upper bound for the vectorial linearity. Recently, Carlet established a lower bound in terms of differential uniformity. In this paper, we i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of combinatorial theory. Series A Ročník 212; s. 106001
Hlavní autor: Nagy, Gábor P.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.05.2025
Témata:
ISSN:0097-3165
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The vectorial nonlinearity of a vector-valued function is its distance from the set of affine functions. In 2017, Liu, Mesnager, and Chen conjectured a general upper bound for the vectorial linearity. Recently, Carlet established a lower bound in terms of differential uniformity. In this paper, we improve Carlet's lower bound. Our approach is based on the fact that the level sets of a vectorial Boolean function are thin sets. In particular, level sets of APN functions are Sidon sets, hence the Liu-Mesnager-Chen conjecture predicts that in F2n, there should be Sidon sets of size at least 2n/2+1 for all n. This paper provides an overview of the known large Sidon sets in F2n, and examines the completeness of the large Sidon sets derived from hyperbolas and ellipses of the finite affine plane.
AbstractList The vectorial nonlinearity of a vector-valued function is its distance from the set of affine functions. In 2017, Liu, Mesnager, and Chen conjectured a general upper bound for the vectorial linearity. Recently, Carlet established a lower bound in terms of differential uniformity. In this paper, we improve Carlet's lower bound. Our approach is based on the fact that the level sets of a vectorial Boolean function are thin sets. In particular, level sets of APN functions are Sidon sets, hence the Liu-Mesnager-Chen conjecture predicts that in F2n, there should be Sidon sets of size at least 2n/2+1 for all n. This paper provides an overview of the known large Sidon sets in F2n, and examines the completeness of the large Sidon sets derived from hyperbolas and ellipses of the finite affine plane.
ArticleNumber 106001
Author Nagy, Gábor P.
Author_xml – sequence: 1
  givenname: Gábor P.
  orcidid: 0000-0002-9558-4197
  surname: Nagy
  fullname: Nagy, Gábor P.
  email: nagyg@math.u-szeged.hu
  organization: Institute of Mathematics, Budapest University of Technology and Economics Műegyetem rkp 3, H-1111 Budapest, Hungary
BookMark eNp9kMtKAzEUhrOoYFt9AVd5AKeeXGcKbrR4peBCXYdMksEMYyJJLPTtnaG6cdHVucD3c863QLMQg0PogsCKAJFX_ao3Ra8oUD4uJACZoTnAuq4YkeIULXLuAYAKwufo-dXbGHB2JV_i8uH_Wh3sODo8Zg8-OJ182ePY4Z0zJSavB3wb4-B0wN13MMXHkM_QSaeH7M5_6xK939-9bR6r7cvD0-ZmWxkGUCpOx0oYYYIyy9qmdrVswThpmjWHVljRMktot9ailoIaQbmVvNFtyztKiWZL1BxyTYo5J9cp44ueTihJ-0ERUJMH1avJg5o8qIOHEaX_0K_kP3XaH4euD5Abn9p5l1Q23gXjrE-jDWWjP4b_AEsMelM
CitedBy_id crossref_primary_10_1007_s12095_025_00808_4
Cites_doi 10.1016/S0021-9800(69)80038-4
10.1109/TIT.2017.2757938
10.1007/s12095-015-0176-z
10.3934/amc.2023054
10.1112/jlms/s1-16.4.212
10.1007/BF00630563
10.1007/s10801-020-00988-7
10.18273/revint.v33n2-2015006
10.1109/18.52487
10.1023/A:1008344232130
10.1109/TIT.2017.2750663
10.1515/9781400847419
10.1016/S0195-6698(85)80001-9
10.3934/amc.2021064
10.1080/00029890.2023.2176667
10.1109/18.133262
10.1016/j.ffa.2018.12.001
10.1137/21M1454663
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright_xml – notice: 2024 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.jcta.2024.106001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 10_1016_j_jcta_2024_106001
S0097316524001407
GrantInformation_xml – fundername: National Research, Development and Innovation Fund
  grantid: SNN 132625
  funderid: https://doi.org/10.13039/501100012550
– fundername: Program of Excellence
  grantid: TKP2021-NVA-02
GroupedDBID --K
--M
--Z
-DZ
-~X
.DC
.~1
0R~
186
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AATTM
AAXKI
AAXUO
ABAOU
ABDPE
ABEFU
ABFNM
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACNCT
ACRLP
ACRPL
ADBBV
ADEZE
ADFGL
ADIYS
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AETEA
AEXQZ
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
MVM
N9A
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SSH
SSW
SSZ
T5K
TN5
UPT
UQL
WH7
WUQ
XJT
XPP
YQT
ZCG
ZMT
ZU3
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
ADXHL
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-42c301313523d3b87e76b0ce6c8940b5d5b3d12f9a57652c524d648abb4f221a3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001392239300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0097-3165
IngestDate Sat Nov 29 03:49:51 EST 2025
Tue Nov 18 21:32:35 EST 2025
Sun Apr 06 06:55:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords APN functions
Hamming distance
Sidon sets
Vectorial Boolean functions
Error correcting codes
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-42c301313523d3b87e76b0ce6c8940b5d5b3d12f9a57652c524d648abb4f221a3
ORCID 0000-0002-9558-4197
ParticipantIDs crossref_citationtrail_10_1016_j_jcta_2024_106001
crossref_primary_10_1016_j_jcta_2024_106001
elsevier_sciencedirect_doi_10_1016_j_jcta_2024_106001
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of combinatorial theory. Series A
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Matsui (br0250) 1994
Charpin, Peng (br0120) 2019; 56
C. Carlet, Private communication, Dec. 2022.
Carlet, Mesnager (br0100) 2022; 55
Budaghyan (br0040) 2018; 64
Lindström (br0220) 1969; 6
Liu, Mesnager, Chen (br0230) 2017; 9
Erdös, Turán (br0170) 1941; 16
Caicedo, Martos, Trujillo (br0050) 2015; 33
Czerwinski, Pott (br0160) 2024; 18
Hughes, Piper (br0210) 1973; vol. 6
Chen (br0130) 1991; 37
I. Czerwinski, A. Pott, Private communication, Nov. 2024.
Grassl (br0190) 2007
Carlet, Charpin, Zinoviev (br0090) 1998; 15
Gorodilova (br0180) 2022; 19
Hirschfeld, Korchmáros, Torres (br0200) 2008
Redman, Rose, Walker (br0260) 2022; 36
Biham, Shamir (br0030) 1991; 4
Balogh, Füredi, Roy (br0020) 2023; 130
van der Vlugt (br0270) 1990; 36
Carlet (br0080) 2022
Xu (br0280) 2018; 64
Carlet (br0060) 2021
MacWilliams, Sloane (br0240) 1977; vol. 16
Carlet, Picek (br0110) 2023; 17
Czerwinski (br0140) 2020
Babai, Sós (br0010) 1985; 6
Xu (10.1016/j.jcta.2024.106001_br0280) 2018; 64
Gorodilova (10.1016/j.jcta.2024.106001_br0180) 2022; 19
Matsui (10.1016/j.jcta.2024.106001_br0250) 1994
Budaghyan (10.1016/j.jcta.2024.106001_br0040) 2018; 64
Czerwinski (10.1016/j.jcta.2024.106001_br0140) 2020
Charpin (10.1016/j.jcta.2024.106001_br0120) 2019; 56
Erdös (10.1016/j.jcta.2024.106001_br0170) 1941; 16
Czerwinski (10.1016/j.jcta.2024.106001_br0160) 2024; 18
Babai (10.1016/j.jcta.2024.106001_br0010) 1985; 6
Redman (10.1016/j.jcta.2024.106001_br0260) 2022; 36
Carlet (10.1016/j.jcta.2024.106001_br0110) 2023; 17
Lindström (10.1016/j.jcta.2024.106001_br0220) 1969; 6
Caicedo (10.1016/j.jcta.2024.106001_br0050) 2015; 33
Carlet (10.1016/j.jcta.2024.106001_br0090) 1998; 15
Hirschfeld (10.1016/j.jcta.2024.106001_br0200) 2008
Biham (10.1016/j.jcta.2024.106001_br0030) 1991; 4
Liu (10.1016/j.jcta.2024.106001_br0230) 2017; 9
10.1016/j.jcta.2024.106001_br0070
Chen (10.1016/j.jcta.2024.106001_br0130) 1991; 37
Grassl (10.1016/j.jcta.2024.106001_br0190)
Carlet (10.1016/j.jcta.2024.106001_br0060) 2021
10.1016/j.jcta.2024.106001_br0150
Carlet (10.1016/j.jcta.2024.106001_br0080) 2022
van der Vlugt (10.1016/j.jcta.2024.106001_br0270) 1990; 36
MacWilliams (10.1016/j.jcta.2024.106001_br0240) 1977; vol. 16
Balogh (10.1016/j.jcta.2024.106001_br0020) 2023; 130
Carlet (10.1016/j.jcta.2024.106001_br0100) 2022; 55
Hughes (10.1016/j.jcta.2024.106001_br0210) 1973; vol. 6
References_xml – volume: 4
  start-page: 3
  year: 1991
  end-page: 72
  ident: br0030
  article-title: Differential cryptanalysis of DES-like cryptosystems
  publication-title: J. Cryptol.
– year: 2007
  ident: br0190
  article-title: Bounds on the minimum distance of linear codes and quantum codes
– volume: 64
  start-page: 367
  year: 2018
  end-page: 383
  ident: br0280
  article-title: Classification of bent monomials, constructions of bent multinomials and upper bounds on the nonlinearity of vectorial functions
  publication-title: IEEE Trans. Inf. Theory
– volume: 33
  start-page: 161
  year: 2015
  end-page: 172
  ident: br0050
  article-title: -Golomb rulers
  publication-title: Rev. Integr. Temas Mat.
– volume: 36
  start-page: 397
  year: 1990
  end-page: 398
  ident: br0270
  article-title: The true dimension of certain binary Goppa codes
  publication-title: IEEE Trans. Inf. Theory
– reference: C. Carlet, Private communication, Dec. 2022.
– volume: 55
  start-page: 43
  year: 2022
  end-page: 59
  ident: br0100
  article-title: On those multiplicative subgroups of
  publication-title: J. Algebraic Comb.
– start-page: 386
  year: 1994
  end-page: 397
  ident: br0250
  article-title: Linear cryptanalysis method for DES cipher
  publication-title: Advances in Cryptology — EUROCRYPT '93
– volume: vol. 6
  year: 1973
  ident: br0210
  article-title: Projective Planes
  publication-title: Graduate Texts in Mathematics
– volume: 17
  start-page: 1507
  year: 2023
  end-page: 1525
  ident: br0110
  article-title: On the exponents of APN power functions and Sidon sets, sum-free sets, and Dickson polynomials
  publication-title: Adv. Math. Commun.
– volume: 56
  start-page: 188
  year: 2019
  end-page: 208
  ident: br0120
  article-title: New links between nonlinearity and differential uniformity
  publication-title: Finite Fields Appl.
– volume: 64
  start-page: 4399
  year: 2018
  end-page: 4411
  ident: br0040
  article-title: On upper bounds for algebraic degrees of APN functions
  publication-title: IEEE Trans. Inf. Theory
– volume: 36
  start-page: 1861
  year: 2022
  end-page: 1867
  ident: br0260
  article-title: A small maximal Sidon set in
  publication-title: SIAM J. Discrete Math.
– volume: vol. 16
  year: 1977
  ident: br0240
  article-title: The Theory of Error-Correcting Codes
  publication-title: North-Holland Mathematical Library
– volume: 15
  start-page: 125
  year: 1998
  end-page: 156
  ident: br0090
  article-title: Codes, bent functions and permutations suitable for DES-like cryptosystems
  publication-title: Des. Codes Cryptogr.
– volume: 6
  start-page: 402
  year: 1969
  end-page: 407
  ident: br0220
  article-title: Determination of two vectors from the sum
  publication-title: J. Comb. Theory
– year: 2021
  ident: br0060
  article-title: Boolean Functions for Cryptography and Coding Theory
– year: 2008
  ident: br0200
  article-title: Algebraic Curves over a Finite Field
  publication-title: Princeton Series in Applied Mathematics
– volume: 9
  start-page: 345
  year: 2017
  end-page: 361
  ident: br0230
  article-title: On the nonlinearity of S-boxes and linear codes
  publication-title: Cryptogr. Commun.
– volume: 16
  start-page: 212
  year: 1941
  end-page: 215
  ident: br0170
  article-title: On a problem of Sidon in additive number theory, and on some related problems
  publication-title: J. Lond. Math. Soc.
– volume: 37
  start-page: 1429
  year: 1991
  end-page: 1432
  ident: br0130
  article-title: Construction of some binary linear codes of minimum distance five
  publication-title: IEEE Trans. Inf. Theory
– start-page: 243
  year: 2022
  end-page: 254
  ident: br0080
  article-title: On APN functions whose graphs are maximal Sidon sets
  publication-title: LATIN 2022: Theoretical Informatics
– reference: I. Czerwinski, A. Pott, Private communication, Nov. 2024.
– volume: 6
  start-page: 101
  year: 1985
  end-page: 114
  ident: br0010
  article-title: Sidon sets in groups and induced subgraphs of Cayley graphs
  publication-title: Eur. J. Comb.
– volume: 18
  start-page: 549
  year: 2024
  end-page: 566
  ident: br0160
  article-title: Sidon sets, sum-free sets and linear codes
  publication-title: Adv. Math. Commun.
– volume: 130
  start-page: 437
  year: 2023
  end-page: 445
  ident: br0020
  article-title: An upper bound on the size of Sidon sets
  publication-title: Am. Math. Mon.
– year: 2020
  ident: br0140
  article-title: On the minimal value set size of APN functions
– volume: 19
  year: 2022
  ident: br0180
  article-title: An overview of the eight international Olympiad in cryptography “Non-Stop University CRYPTO”
  publication-title: Sib. Èlektron. Mat. Izv.
– volume: 6
  start-page: 402
  year: 1969
  ident: 10.1016/j.jcta.2024.106001_br0220
  article-title: Determination of two vectors from the sum
  publication-title: J. Comb. Theory
  doi: 10.1016/S0021-9800(69)80038-4
– volume: 19
  issue: 1
  year: 2022
  ident: 10.1016/j.jcta.2024.106001_br0180
  article-title: An overview of the eight international Olympiad in cryptography “Non-Stop University CRYPTO”
  publication-title: Sib. Èlektron. Mat. Izv.
– volume: 64
  start-page: 4399
  issue: 6
  year: 2018
  ident: 10.1016/j.jcta.2024.106001_br0040
  article-title: On upper bounds for algebraic degrees of APN functions
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2017.2757938
– volume: 9
  start-page: 345
  issue: 3
  year: 2017
  ident: 10.1016/j.jcta.2024.106001_br0230
  article-title: On the nonlinearity of S-boxes and linear codes
  publication-title: Cryptogr. Commun.
  doi: 10.1007/s12095-015-0176-z
– volume: vol. 16
  year: 1977
  ident: 10.1016/j.jcta.2024.106001_br0240
  article-title: The Theory of Error-Correcting Codes
– volume: 18
  start-page: 549
  issue: 2
  year: 2024
  ident: 10.1016/j.jcta.2024.106001_br0160
  article-title: Sidon sets, sum-free sets and linear codes
  publication-title: Adv. Math. Commun.
  doi: 10.3934/amc.2023054
– volume: 16
  start-page: 212
  year: 1941
  ident: 10.1016/j.jcta.2024.106001_br0170
  article-title: On a problem of Sidon in additive number theory, and on some related problems
  publication-title: J. Lond. Math. Soc.
  doi: 10.1112/jlms/s1-16.4.212
– year: 2021
  ident: 10.1016/j.jcta.2024.106001_br0060
– volume: 4
  start-page: 3
  issue: 1
  year: 1991
  ident: 10.1016/j.jcta.2024.106001_br0030
  article-title: Differential cryptanalysis of DES-like cryptosystems
  publication-title: J. Cryptol.
  doi: 10.1007/BF00630563
– volume: 55
  start-page: 43
  issue: 1
  year: 2022
  ident: 10.1016/j.jcta.2024.106001_br0100
  article-title: On those multiplicative subgroups of F2n⁎ which are Sidon sets and/or sum-free sets
  publication-title: J. Algebraic Comb.
  doi: 10.1007/s10801-020-00988-7
– volume: 33
  start-page: 161
  issue: 2
  year: 2015
  ident: 10.1016/j.jcta.2024.106001_br0050
  article-title: g-Golomb rulers
  publication-title: Rev. Integr. Temas Mat.
  doi: 10.18273/revint.v33n2-2015006
– volume: 36
  start-page: 397
  issue: 2
  year: 1990
  ident: 10.1016/j.jcta.2024.106001_br0270
  article-title: The true dimension of certain binary Goppa codes
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.52487
– start-page: 243
  year: 2022
  ident: 10.1016/j.jcta.2024.106001_br0080
  article-title: On APN functions whose graphs are maximal Sidon sets
– volume: 15
  start-page: 125
  issue: 2
  year: 1998
  ident: 10.1016/j.jcta.2024.106001_br0090
  article-title: Codes, bent functions and permutations suitable for DES-like cryptosystems
  publication-title: Des. Codes Cryptogr.
  doi: 10.1023/A:1008344232130
– volume: 64
  start-page: 367
  issue: 1
  year: 2018
  ident: 10.1016/j.jcta.2024.106001_br0280
  article-title: Classification of bent monomials, constructions of bent multinomials and upper bounds on the nonlinearity of vectorial functions
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2017.2750663
– year: 2008
  ident: 10.1016/j.jcta.2024.106001_br0200
  article-title: Algebraic Curves over a Finite Field
  doi: 10.1515/9781400847419
– ident: 10.1016/j.jcta.2024.106001_br0150
– ident: 10.1016/j.jcta.2024.106001_br0190
– volume: 6
  start-page: 101
  issue: 2
  year: 1985
  ident: 10.1016/j.jcta.2024.106001_br0010
  article-title: Sidon sets in groups and induced subgraphs of Cayley graphs
  publication-title: Eur. J. Comb.
  doi: 10.1016/S0195-6698(85)80001-9
– year: 2020
  ident: 10.1016/j.jcta.2024.106001_br0140
– volume: 17
  start-page: 1507
  issue: 6
  year: 2023
  ident: 10.1016/j.jcta.2024.106001_br0110
  article-title: On the exponents of APN power functions and Sidon sets, sum-free sets, and Dickson polynomials
  publication-title: Adv. Math. Commun.
  doi: 10.3934/amc.2021064
– volume: 130
  start-page: 437
  issue: 5
  year: 2023
  ident: 10.1016/j.jcta.2024.106001_br0020
  article-title: An upper bound on the size of Sidon sets
  publication-title: Am. Math. Mon.
  doi: 10.1080/00029890.2023.2176667
– volume: vol. 6
  year: 1973
  ident: 10.1016/j.jcta.2024.106001_br0210
  article-title: Projective Planes
– start-page: 386
  year: 1994
  ident: 10.1016/j.jcta.2024.106001_br0250
  article-title: Linear cryptanalysis method for DES cipher
– volume: 37
  start-page: 1429
  issue: 5
  year: 1991
  ident: 10.1016/j.jcta.2024.106001_br0130
  article-title: Construction of some binary linear codes of minimum distance five
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.133262
– ident: 10.1016/j.jcta.2024.106001_br0070
– volume: 56
  start-page: 188
  year: 2019
  ident: 10.1016/j.jcta.2024.106001_br0120
  article-title: New links between nonlinearity and differential uniformity
  publication-title: Finite Fields Appl.
  doi: 10.1016/j.ffa.2018.12.001
– volume: 36
  start-page: 1861
  issue: 3
  year: 2022
  ident: 10.1016/j.jcta.2024.106001_br0260
  article-title: A small maximal Sidon set in Z2n
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/21M1454663
SSID ssj0002514
Score 2.3752594
Snippet The vectorial nonlinearity of a vector-valued function is its distance from the set of affine functions. In 2017, Liu, Mesnager, and Chen conjectured a general...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106001
SubjectTerms APN functions
Error correcting codes
Hamming distance
Sidon sets
Vectorial Boolean functions
Title Sidon sets, thin sets, and the nonlinearity of vectorial Boolean functions
URI https://dx.doi.org/10.1016/j.jcta.2024.106001
Volume 212
WOSCitedRecordID wos001392239300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0097-3165
  databaseCode: AIEXJ
  dateStart: 20211211
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002514
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NS8MwFA86PehB_MRvcvCmHW2atOlRRVHBIaiwW0maDDfGJlsd87_3pUnb-YkevPQjNGnIL31579eX9xA60kpIlsiOl4U08ijo9B6YQdITmiitJA19LotkE3Grxdvt5M6lVRwX6QTiwYBPp8nzv0INZQC22Tr7B7irRqEArgF0OALscPwV8PddBYiOdV4glD9165vSW3Jg42OIkfPHmBTUveHOz4bDvuHmzXJXU3mflVfoOJjUwtUqdkO-No3gAcO7pkdbwm2EKX7HBzDdju-aszwDYbVXXyk7E8No2swOpewkzgfaSj8wL31b5ZNgthxBr9nLchPtidBm_fD7KNgfVqfKZ7B0R-ulpo3UtJHaNubRAolZwhto4fT6on1TrcTExXYve-42TVn_vo89-VoxmVE2HlbRihtofGrRXUNzerCOlm-rELvjDXRT4IwNtCfYoOwuAWO41XgWYzzs4Apj7DDGFcab6PHy4uH8ynOJMeCL8v3cowTOQRiA8hyqUPJYx5H0Mx1lPKG-ZIrJUAWkkwiwJhnJGKEqolxISTuEBCLcQg3ohd5GmCegriifKkMASq6EVhw03AxKIhYKvYOCclTSzEWNN8lL-un3eOyg46rOs42Z8uPTrBzs1Gl9VptLYe78UG_3T2_ZQ0v1pN5HjXz0og_QYjbJu-PRoZs4b4AEdO4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sidon+sets%2C+thin+sets%2C+and+the+nonlinearity+of+vectorial+Boolean+functions&rft.jtitle=Journal+of+combinatorial+theory.+Series+A&rft.au=Nagy%2C+G%C3%A1bor+P.&rft.date=2025-05-01&rft.issn=0097-3165&rft.volume=212&rft.spage=106001&rft_id=info:doi/10.1016%2Fj.jcta.2024.106001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcta_2024_106001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0097-3165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0097-3165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0097-3165&client=summon