Sidon sets, thin sets, and the nonlinearity of vectorial Boolean functions

The vectorial nonlinearity of a vector-valued function is its distance from the set of affine functions. In 2017, Liu, Mesnager, and Chen conjectured a general upper bound for the vectorial linearity. Recently, Carlet established a lower bound in terms of differential uniformity. In this paper, we i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of combinatorial theory. Series A Ročník 212; s. 106001
Hlavní autor: Nagy, Gábor P.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.05.2025
Témata:
ISSN:0097-3165
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The vectorial nonlinearity of a vector-valued function is its distance from the set of affine functions. In 2017, Liu, Mesnager, and Chen conjectured a general upper bound for the vectorial linearity. Recently, Carlet established a lower bound in terms of differential uniformity. In this paper, we improve Carlet's lower bound. Our approach is based on the fact that the level sets of a vectorial Boolean function are thin sets. In particular, level sets of APN functions are Sidon sets, hence the Liu-Mesnager-Chen conjecture predicts that in F2n, there should be Sidon sets of size at least 2n/2+1 for all n. This paper provides an overview of the known large Sidon sets in F2n, and examines the completeness of the large Sidon sets derived from hyperbolas and ellipses of the finite affine plane.
ISSN:0097-3165
DOI:10.1016/j.jcta.2024.106001