Generalized Metric Subregularity for Generalized Subsmooth Multifunctions in Asplund Spaces

This paper introduces and considers the concept of generalized subsmoothness of a multifunction, which is a generalization of both the prox-regularity property and the subsmoothness property of multifunctions. Subsequently, it mainly deals with generalized metric subregularity (in particular, Hölder...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Set-valued and variational analysis Jg. 33; H. 2; S. 14
Hauptverfasser: Gao, Ming, Ouyang, Wei, Zhang, Jin, Zhu, Jiangxing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 01.06.2025
Springer Nature B.V
Schlagworte:
ISSN:1877-0533, 1877-0541
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces and considers the concept of generalized subsmoothness of a multifunction, which is a generalization of both the prox-regularity property and the subsmoothness property of multifunctions. Subsequently, it mainly deals with generalized metric subregularity (in particular, Hölder metric subregularity) for general set-valued mappings in Asplund spaces. Employing advanced techniques of variational analysis and generalized differentiation, we derive sufficient conditions for generalized metric subregularity, which extend even the known results for the conventional metric subregularity. In particular, our results improve/extend the main results established by Li and Mordukhovich (SIAM J. Optim. 22:1655–1684, 2012 ). Moreover, we also conduct local convergence analysis of an inexact quasi-Newton method for solving the generalized equation 0 ∈ f ( x ) + F ( x ) in Banach spaces, where the function f is continuous but not smooth and F is a set-valued mapping with closed graph.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1877-0533
1877-0541
DOI:10.1007/s11228-025-00753-7