A sharp upper bound for sampling numbers in L2
For a class F of complex-valued functions on a set D, we denote by gn(F) its sampling numbers, i.e., the minimal worst-case error on F, measured in L2, that can be achieved with a recovery algorithm based on n function evaluations. We prove that there is a universal constant c∈N such that, if F is t...
Uloženo v:
| Vydáno v: | Applied and computational harmonic analysis Ročník 63; s. 113 - 134 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.03.2023
|
| Témata: | |
| ISSN: | 1063-5203, 1096-603X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | For a class F of complex-valued functions on a set D, we denote by gn(F) its sampling numbers, i.e., the minimal worst-case error on F, measured in L2, that can be achieved with a recovery algorithm based on n function evaluations. We prove that there is a universal constant c∈N such that, if F is the unit ball of a separable reproducing kernel Hilbert space, thengcn(F)2≤1n∑k≥ndk(F)2, where dk(F) are the Kolmogorov widths (or approximation numbers) of F in L2. We also obtain similar upper bounds for more general classes F, including all compact subsets of the space of continuous functions on a bounded domain D⊂Rd, and show that these bounds are sharp by providing examples where the converse inequality holds up to a constant. The results rely on the solution to the Kadison-Singer problem, which we extend to the subsampling of a sum of infinite rank-one matrices. |
|---|---|
| ISSN: | 1063-5203 1096-603X |
| DOI: | 10.1016/j.acha.2022.12.001 |