Extended skew partition problem
A skew partition as defined by Chvátal is a partition of the vertex set of a graph into four nonempty parts A 1 , A 2 , B 1 , B 2 such that there are all possible edges between A 1 and A 2 , and no edges between B 1 and B 2 . We introduce the concept of ( n 1 , n 2 ) -extended skew partition which i...
Uloženo v:
| Vydáno v: | Discrete mathematics Ročník 306; číslo 19; s. 2438 - 2449 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
06.10.2006
|
| Témata: | |
| ISSN: | 0012-365X, 1872-681X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A skew partition as defined by Chvátal is a partition of the vertex set of a graph into four nonempty parts
A
1
,
A
2
,
B
1
,
B
2
such that there are all possible edges between
A
1
and
A
2
, and no edges between
B
1
and
B
2
. We introduce the concept of
(
n
1
,
n
2
)
-extended skew partition which includes all partitioning problems into
n
1
+
n
2
nonempty parts
A
1
,
…
,
A
n
1
,
B
1
,
…
,
B
n
2
such that there are all possible edges between the
A
i
parts, no edges between the
B
j
parts,
i
∈
{
1
,
…
,
n
1
}
,
j
∈
{
1
,
…
,
n
2
}
, which generalizes the skew partition. We present a polynomial-time algorithm for testing whether a graph admits an
(
n
1
,
n
2
)
-extended skew partition. As a tool to complete this task we also develop a generalized 2-SAT algorithm, which by itself may have application to other partition problems. |
|---|---|
| ISSN: | 0012-365X 1872-681X |
| DOI: | 10.1016/j.disc.2005.12.034 |