Extended skew partition problem
A skew partition as defined by Chvátal is a partition of the vertex set of a graph into four nonempty parts A 1 , A 2 , B 1 , B 2 such that there are all possible edges between A 1 and A 2 , and no edges between B 1 and B 2 . We introduce the concept of ( n 1 , n 2 ) -extended skew partition which i...
Gespeichert in:
| Veröffentlicht in: | Discrete mathematics Jg. 306; H. 19; S. 2438 - 2449 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
06.10.2006
|
| Schlagworte: | |
| ISSN: | 0012-365X, 1872-681X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | A skew partition as defined by Chvátal is a partition of the vertex set of a graph into four nonempty parts
A
1
,
A
2
,
B
1
,
B
2
such that there are all possible edges between
A
1
and
A
2
, and no edges between
B
1
and
B
2
. We introduce the concept of
(
n
1
,
n
2
)
-extended skew partition which includes all partitioning problems into
n
1
+
n
2
nonempty parts
A
1
,
…
,
A
n
1
,
B
1
,
…
,
B
n
2
such that there are all possible edges between the
A
i
parts, no edges between the
B
j
parts,
i
∈
{
1
,
…
,
n
1
}
,
j
∈
{
1
,
…
,
n
2
}
, which generalizes the skew partition. We present a polynomial-time algorithm for testing whether a graph admits an
(
n
1
,
n
2
)
-extended skew partition. As a tool to complete this task we also develop a generalized 2-SAT algorithm, which by itself may have application to other partition problems. |
|---|---|
| ISSN: | 0012-365X 1872-681X |
| DOI: | 10.1016/j.disc.2005.12.034 |