Parallel algorithms for solving linear systems with block-tridiagonal matrices on multi-core CPU with GPU
► Block-tridiagonal linear systems in geoelectrics problems. ► Parallel algorithms for solving block-tridiagonal SLAE are proposed and implemented numerically on multi-core CPU with GPU. ► Investigation of efficiency and optimization of parallel algorithms are performed. For solving systems of linea...
Uloženo v:
| Vydáno v: | Journal of computational science Ročník 3; číslo 6; s. 445 - 449 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.11.2012
|
| Témata: | |
| ISSN: | 1877-7503, 1877-7511 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | ► Block-tridiagonal linear systems in geoelectrics problems. ► Parallel algorithms for solving block-tridiagonal SLAE are proposed and implemented numerically on multi-core CPU with GPU. ► Investigation of efficiency and optimization of parallel algorithms are performed.
For solving systems of linear algebraic equations with block-tridiagonal matrices arising in geoelectrics problems, the parallel matrix sweep algorithm, conjugate gradient method with preconditioner, and square root method are proposed and implemented numerically on multi-core CPU Intel with graphics processors NVIDIA. Investigation of efficiency and optimization of parallel algorithms for solving the problem with quasi-model data are performed. |
|---|---|
| ISSN: | 1877-7503 1877-7511 |
| DOI: | 10.1016/j.jocs.2012.08.004 |