ForestResNet: A Deep Learning Algorithm for Forest Image Classification

Due to its large area and rugged terrain, the forest often fails to be detected in time and eventually causes severe losses[1]. Therefore, early detection of forest fires is significant for forest fire protection. The application of deep learning to the classification of smoke and fire in forest ima...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of physics. Conference series Ročník 2024; číslo 1; s. 12053 - 12058
Hlavní autoři: Tang, Yongqing, Feng, Hao, Chen, Junyan, Chen, Yuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: IOP Publishing 01.09.2021
ISSN:1742-6588, 1742-6596
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Due to its large area and rugged terrain, the forest often fails to be detected in time and eventually causes severe losses[1]. Therefore, early detection of forest fires is significant for forest fire protection. The application of deep learning to the classification of smoke and fire in forest images can detect forest conditions more accurately. In this paper, a classification network, named ForestResNet, is proposed to efficiently detect forest conditions, which uses ResNet50[2] as a feature extraction network to achieve rapid and accurate extraction of image feature information. Experimental results show that the proposed network achieves excellent segmentation performance in terms of efficiency and accuracy.
AbstractList Due to its large area and rugged terrain, the forest often fails to be detected in time and eventually causes severe losses[1]. Therefore, early detection of forest fires is significant for forest fire protection. The application of deep learning to the classification of smoke and fire in forest images can detect forest conditions more accurately. In this paper, a classification network, named ForestResNet, is proposed to efficiently detect forest conditions, which uses ResNet50[2] as a feature extraction network to achieve rapid and accurate extraction of image feature information. Experimental results show that the proposed network achieves excellent segmentation performance in terms of efficiency and accuracy.
Author Tang, Yongqing
Feng, Hao
Chen, Junyan
Chen, Yuan
Author_xml – sequence: 1
  givenname: Yongqing
  surname: Tang
  fullname: Tang, Yongqing
  organization: School of computer and information security, Guilin University of Electronic Technology , China
– sequence: 2
  givenname: Hao
  surname: Feng
  fullname: Feng, Hao
  organization: School of computer and information security, Guilin University of Electronic Technology , China
– sequence: 3
  givenname: Junyan
  surname: Chen
  fullname: Chen, Junyan
  organization: School of computer and information security, Guilin University of Electronic Technology , China
– sequence: 4
  givenname: Yuan
  surname: Chen
  fullname: Chen, Yuan
  organization: School of computer and information security, Guilin University of Electronic Technology , China
BookMark eNqNkE1PwzAMhiM0JLbBbyBnpFKnadoGicNU2BiaAPFxjrI2GZm6pkrKgX9PS9EkEIf5Ykv2Y_t9J2hU21ohdE7gkkCWhSSNoyBhPAkjiOKQhEAiYPQIjfed0b7OshM08X4LQLtIx2gxt0759ln5B9Ve4Rm-UarBKyVdbeoNnlUb60z7vsPaOjzM4uVObhTOK-m90aaQrbH1KTrWsvLq7CdP0dv89jW_C1aPi2U-WwUF7W4GOs2o1AlwkhSak5J1T8SaS84gLmMmgcagSLZmaaQ0T9clsCKREZear2OmgU7R9bC3cNZ7p7QoTPv9QeukqQQB0bsier2i1y56VwQRgysdn_7hG2d20n0eQNKBNLYRW_vh6k7nAdTFP9T9U_7ye1A0paZffWGDQA
CitedBy_id crossref_primary_10_1155_2023_7939516
crossref_primary_10_3390_su15020964
crossref_primary_10_3390_app13085060
crossref_primary_10_1080_01431161_2023_2283904
crossref_primary_10_3390_rs15071821
crossref_primary_10_3390_sym14102155
crossref_primary_10_1007_s00500_025_10512_3
crossref_primary_10_3390_computers13020036
crossref_primary_10_3390_electronics13101881
crossref_primary_10_3390_f14071493
crossref_primary_10_1007_s41870_023_01630_y
crossref_primary_10_3390_f14102080
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
DBID O3W
TSCCA
AAYXX
CITATION
DOI 10.1088/1742-6596/2024/1/012053
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Journals Open Access
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_2024_1_012053
JPCS_2024_1_012053
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
AAYXX
AEINN
AFFHD
CITATION
OVT
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c3003-f783af60916cf91d53374f9a9504d45a0340e18b572ef97bd05c6a29af9b45f03
IEDL.DBID O3W
ISSN 1742-6588
IngestDate Tue Nov 18 21:03:11 EST 2025
Sat Nov 29 03:39:35 EST 2025
Wed Aug 21 03:32:48 EDT 2024
Tue Oct 26 22:20:57 EDT 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3003-f783af60916cf91d53374f9a9504d45a0340e18b572ef97bd05c6a29af9b45f03
OpenAccessLink https://iopscience.iop.org/article/10.1088/1742-6596/2024/1/012053
PageCount 6
ParticipantIDs iop_journals_10_1088_1742_6596_2024_1_012053
crossref_citationtrail_10_1088_1742_6596_2024_1_012053
crossref_primary_10_1088_1742_6596_2024_1_012053
PublicationCentury 2000
PublicationDate 20210901
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 20210901
  day: 01
PublicationDecade 2020
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Hu (JPCS_2024_1_012053bib3) 2018
Yuan (JPCS_2024_1_012053bib5) 2015
Woo (JPCS_2024_1_012053bib4) 2018
Ganesan (JPCS_2024_1_012053bib1) 2016
He (JPCS_2024_1_012053bib8) 2016
Qiu (JPCS_2024_1_012053bib9) 2021
Szegedy (JPCS_2024_1_012053bib6) 2015
Chen (JPCS_2024_1_012053bib2) 2018
Çiçek (JPCS_2024_1_012053bib10) 2016
Chen (JPCS_2024_1_012053bib7) 2018
Oktay (JPCS_2024_1_012053bib11) 2018
References_xml – start-page: 639
  year: 2015
  ident: JPCS_2024_1_012053bib5
– start-page: 308
  year: 2018
  ident: JPCS_2024_1_012053bib7
– start-page: 1049
  year: 2021
  ident: JPCS_2024_1_012053bib9
– start-page: 1
  year: 2016
  ident: JPCS_2024_1_012053bib1
– year: 2018
  ident: JPCS_2024_1_012053bib11
  article-title: Attention u-net: Learning where to look for the pancreas[J]
– start-page: 424
  year: 2016
  ident: JPCS_2024_1_012053bib10
– start-page: 3
  year: 2018
  ident: JPCS_2024_1_012053bib4
  article-title: Cbam: Convolutional block attention module[C]
– start-page: 308
  year: 2018
  ident: JPCS_2024_1_012053bib2
– year: 2018
  ident: JPCS_2024_1_012053bib3
  article-title: Competitive inner-imaging squeeze and excitation for residual network[J]
– start-page: 1
  year: 2015
  ident: JPCS_2024_1_012053bib6
  article-title: Going deeper with convolutions[C]
– start-page: 630
  year: 2016
  ident: JPCS_2024_1_012053bib8
SSID ssj0033337
Score 2.3919437
Snippet Due to its large area and rugged terrain, the forest often fails to be detected in time and eventually causes severe losses[1]. Therefore, early detection of...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 12053
Title ForestResNet: A Deep Learning Algorithm for Forest Image Classification
URI https://iopscience.iop.org/article/10.1088/1742-6596/2024/1/012053
Volume 2024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Journals Open Access
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: O3W
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: P5Z
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (ProQuest)
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: BENPR
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: PIMPY
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELVoCxIXdkRZKktwJDSLndjcSmlZhEJVtt4sx7VLpW5qAt-PnaSIHFCFRE45zFjWsz3zojzPAHDGuRtxGgjLp66wkE4CFtU017KJMhk8ikQqHn99CMKQ9Hq0cBdmOstD_4V-zQoFZxDmgjhS1xzatXxMffPhjupO3dz_xF4JVDyis7ne04_e2yIae_oJskuRxomQhcbr94EKGaqkZ_Ej4bQ3_2OqW2Ajp5uwkXlsgxU52QFrqexTxLvgxnTmjJOujEOZXMIGvJZyBvOaqwPYGA2m82HyPoaa2sLMFt6NdQiCaTNNIzNKV3YPvLRbz81bK2-tYAnPqNFUQDyufE0WfKGo09ekL0CKcopt1EeY2x6ypUMiHLhS0SDq21j43KVc0QhhZXv7oDyZTuQBgK6KKBaCSioRUr4O5KamkWYCiGOsg2cV-As4mcjrjpv2FyOW_v8mhBmUmEGJGZSYwzKUqsD-dpxlpTeWu5zrpWD5MYyXm58WzO87zaeiBZv11eHfBj0C667RvaQ6tGNQTuYf8gSsis9kGM9roHLVCjvdWrpJvwC1idpE
linkProvider IOP Publishing
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLbYeIgLb8SbSHCkrGuTNuE2McpTZeK5W5RmCUwa27QWfj9J2yF2QAiJnnqwo8hO7K_qZxvgUAgvESyUTsA86WCTBBxmYK7jUm0zeJLInDz-dBPGMW23WWsKoq9amMGwDP3H5rVoFFyYsCTE0ZrB0J4TEBbYD3dcq9ds_Sfxa8OOrsC0bVdiT_et_zyOyL55wqIw0ipSOuZ5_bzYRJaqmJ18SzrR4n9tdwkWStiJGoXWMkyp_grM5vRPma7CuZ3QmWZ3Ko1VdoIaqKnUEJW9V19Qo_cyGHWz1zdkIC4qZNHlmwlFKB-qaelGuYfX4DE6ezi9cMoRC470LStNh9QXOjCgIZCa1TsG_IVYM8GIizuYCNfHrqrThISe0ixMOi6RgfCY0CzBRLv-OlT7g77aAOTphBEpmWIKYx2YgG57GxlEgAUhJohuQjA2KZdl_3E7BqPH8__glHJrKW4txa2leJ0XltoE90txWLTg-F3lyLiDl9cx_V38YEL8qnV6PynBjbe2_rboPsy1mhG_uYyvt2Hes1SYnJq2A9Vs9K52YUZ-ZN10tJef1U-0lN4S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ForestResNet%3A+A+Deep+Learning+Algorithm+for+Forest+Image+Classification&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Tang%2C+Yongqing&rft.au=Feng%2C+Hao&rft.au=Chen%2C+Junyan&rft.au=Chen%2C+Yuan&rft.date=2021-09-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=2024&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F2024%2F1%2F012053&rft.externalDocID=JPCS_2024_1_012053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon