Domain Adaptive Algorithm Based on Multi-Manifold Embedded Distributed Alignment for Brain-Computer Interfaces
The use of transfer learning in brain-computer interfaces (BCIs) has potential applications. As electroencephalogram (EEG) signals vary among different paradigms and subjects, existing EEG transfer learning algorithms mainly focus on the alignment of the original space. They may not discover hidden...
Uloženo v:
| Vydáno v: | IEEE journal of biomedical and health informatics Ročník 27; číslo 1; s. 296 - 307 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2168-2194, 2168-2208, 2168-2208 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The use of transfer learning in brain-computer interfaces (BCIs) has potential applications. As electroencephalogram (EEG) signals vary among different paradigms and subjects, existing EEG transfer learning algorithms mainly focus on the alignment of the original space. They may not discover hidden details owing to the low-dimensional structure of EEG. To effectively transfer data from a source to target domain, a multi-manifold embedding domain adaptive algorithm is proposed for BCI. First, we aligned the EEG covariance matrix in the Riemannian manifold and extracted the characteristics of each source domain in the tangent space to reflect the differences between different source domains. Subsequently, we mapped the extracted characteristics to the Grassmann manifold to obtain a common feature representation. In domain adaptation, the geometric and statistical attributes of EEG data were considered simultaneously, and the target domain divergence matrix was updated with pseudo-labels to maximize the inter-class distance and minimize the intra-class distance. Datasets generated via BCIs were used to verify the effectiveness of the algorithm. Under two experimental paradigms, namely single-source to single-target and multi-source to single-target, the average accuracy of the algorithm on three datasets was 73.31% and 81.02%, respectively, which is more than that of several state-of-the-art EEG cross-domain classification approaches. Our multi-manifold embedded domain adaptive method achieved satisfactory results on EEG transfer learning. The method can achieve effective EEG classification without a same subject's training set. |
|---|---|
| AbstractList | The use of transfer learning in brain-computer interfaces (BCIs) has potential applications. As electroencephalogram (EEG) signals vary among different paradigms and subjects, existing EEG transfer learning algorithms mainly focus on the alignment of the original space. They may not discover hidden details owing to the low-dimensional structure of EEG. To effectively transfer data from a source to target domain, a multi-manifold embedding domain adaptive algorithm is proposed for BCI. First, we aligned the EEG covariance matrix in the Riemannian manifold and extracted the characteristics of each source domain in the tangent space to reflect the differences between different source domains. Subsequently, we mapped the extracted characteristics to the Grassmann manifold to obtain a common feature representation. In domain adaptation, the geometric and statistical attributes of EEG data were considered simultaneously, and the target domain divergence matrix was updated with pseudo-labels to maximize the inter-class distance and minimize the intra-class distance. Datasets generated via BCIs were used to verify the effectiveness of the algorithm. Under two experimental paradigms, namely single-source to single-target and multi-source to single-target, the average accuracy of the algorithm on three datasets was 73.31% and 81.02%, respectively, which is more than that of several state-of-the-art EEG cross-domain classification approaches. Our multi-manifold embedded domain adaptive method achieved satisfactory results on EEG transfer learning. The method can achieve effective EEG classification without a same subject's training set. The use of transfer learning in brain-computer interfaces (BCIs) has potential applications. As electroencephalogram (EEG) signals vary among different paradigms and subjects, existing EEG transfer learning algorithms mainly focus on the alignment of the original space. They may not discover hidden details owing to the low-dimensional structure of EEG. To effectively transfer data from a source to target domain, a multi-manifold embedding domain adaptive algorithm is proposed for BCI. First, we aligned the EEG covariance matrix in the Riemannian manifold and extracted the characteristics of each source domain in the tangent space to reflect the differences between different source domains. Subsequently, we mapped the extracted characteristics to the Grassmann manifold to obtain a common feature representation. In domain adaptation, the geometric and statistical attributes of EEG data were considered simultaneously, and the target domain divergence matrix was updated with pseudo-labels to maximize the inter-class distance and minimize the intra-class distance. Datasets generated via BCIs were used to verify the effectiveness of the algorithm. Under two experimental paradigms, namely single-source to single-target and multi-source to single-target, the average accuracy of the algorithm on three datasets was 73.31% and 81.02%, respectively, which is more than that of several state-of-the-art EEG cross-domain classification approaches. Our multi-manifold embedded domain adaptive method achieved satisfactory results on EEG transfer learning. The method can achieve effective EEG classification without a same subject's training set.The use of transfer learning in brain-computer interfaces (BCIs) has potential applications. As electroencephalogram (EEG) signals vary among different paradigms and subjects, existing EEG transfer learning algorithms mainly focus on the alignment of the original space. They may not discover hidden details owing to the low-dimensional structure of EEG. To effectively transfer data from a source to target domain, a multi-manifold embedding domain adaptive algorithm is proposed for BCI. First, we aligned the EEG covariance matrix in the Riemannian manifold and extracted the characteristics of each source domain in the tangent space to reflect the differences between different source domains. Subsequently, we mapped the extracted characteristics to the Grassmann manifold to obtain a common feature representation. In domain adaptation, the geometric and statistical attributes of EEG data were considered simultaneously, and the target domain divergence matrix was updated with pseudo-labels to maximize the inter-class distance and minimize the intra-class distance. Datasets generated via BCIs were used to verify the effectiveness of the algorithm. Under two experimental paradigms, namely single-source to single-target and multi-source to single-target, the average accuracy of the algorithm on three datasets was 73.31% and 81.02%, respectively, which is more than that of several state-of-the-art EEG cross-domain classification approaches. Our multi-manifold embedded domain adaptive method achieved satisfactory results on EEG transfer learning. The method can achieve effective EEG classification without a same subject's training set. |
| Author | Liu, Yici She, Qingshan Zhang, Jianhai Gao, Yunyuan |
| Author_xml | – sequence: 1 givenname: Yunyuan orcidid: 0000-0003-2128-2185 surname: Gao fullname: Gao, Yunyuan email: gyy@hdu.edu.cn organization: College of Automation, Hangzhou Dianzi University, Hangzhou, China – sequence: 2 givenname: Yici orcidid: 0000-0001-6881-9627 surname: Liu fullname: Liu, Yici email: liuyici@hdu.edu.cn organization: HDU-ITMO Joint Institute, Hangzhou Dianzi University, Hangzhou, China – sequence: 3 givenname: Qingshan orcidid: 0000-0001-5206-9833 surname: She fullname: She, Qingshan email: qsshe@hdu.edu.cn organization: College of Automation, Hangzhou Dianzi University, Hangzhou, China – sequence: 4 givenname: Jianhai surname: Zhang fullname: Zhang, Jianhai email: jhzhang@hdu.edu.cn organization: Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36315544$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1PGzEQhq2KqnyUH1AhIUu9cNnUX-vsHpPwlQrUS3te2esxGO3awfYi9d_jKIEDB3wYj2aed2zNe4wOfPCA0A9KZpSS9tfv5e16xghjM85oI2r-BR0xKpuKMdIcvOW0FYfoNKUnUk5TSq38hg655LSuhThC_jKMynm8MGqT3QvgxfAQosuPI16qBAYHj--nIbvqXnlnw2Dw1ajBmNK6dClHp6dc8sXgHvwIPmMbIl7GMrNahXFTmhGvfYlW9ZC-o69WDQlO9_cJ-nd99Xd1W939uVmvFndVzwlhldDaSM21qlsLsrF933KwhEJTa6gZWE0aMNxY21hlSigVK3tJWK3p3Lb8BF3s5m5ieJ4g5W50qYdhUB7ClDo250SKsoYt-vMD-hSm6MvvCiWJrLkUolDne2rSI5huE92o4v_ubZMFoDugjyGlCPYdoaTbGtZtDeu2hnV7w4pm_kHTu6yyCz6XBQ6fKs92SgcA7y-1LedCUP4KWq6jTw |
| CODEN | IJBHA9 |
| CitedBy_id | crossref_primary_10_1016_j_measurement_2025_116836 crossref_primary_10_1016_j_eswa_2024_124673 crossref_primary_10_3389_fnins_2024_1508747 crossref_primary_10_1007_s00521_025_11201_w crossref_primary_10_1016_j_bspc_2023_105155 crossref_primary_10_1007_s11517_024_03036_9 crossref_primary_10_1016_j_neucom_2024_127944 crossref_primary_10_1016_j_compeleceng_2024_109680 crossref_primary_10_1016_j_eswa_2025_129248 crossref_primary_10_1109_ACCESS_2025_3542593 crossref_primary_10_1109_JBHI_2024_3377373 crossref_primary_10_3390_app14062326 crossref_primary_10_1016_j_neucom_2024_129010 crossref_primary_10_1109_TIM_2025_3566804 |
| Cites_doi | 10.1016/j.inffus.2014.12.003 10.1088/1741-2552/aaf3f6 10.1109/PERCOM.2018.8444572 10.1201/9781351231954-19 10.1109/ICCV.2013.274 10.1093/bioinformatics/btl242 10.1109/ICME.2018.8486446 10.1023/B:MACH.0000033120.25363.1e 10.1145/1961189.1961199 10.1088/1741-2552/aab2f2 10.5271/sjweh.1815 10.1007/11566465_15 10.1109/TBME.2017.2742541 10.1109/TBME.2019.2913914 10.1109/ICDM.2017.150 10.1109/CVPR.2014.183 10.1109/CVPR.2017.547 10.1609/aaai.v30i1.10306 10.1016/j.bspc.2022.103555 10.1109/MCI.2015.2501545 10.1109/TNN.2010.2091281 10.1109/TPAMI.1982.4767298 10.1109/ACCESS.2020.2971600 10.1109/CVPR.2012.6247911 10.1016/j.ijpsycho.2019.08.012 10.1080/01621459.1967.10482916 10.4135/9781473933200 10.1126/science.290.5500.2319 10.1007/978-3-319-25040-3_64 10.1109/TNSRE.2020.2985996 10.1016/0165-1781(91)90027-M 10.3390/s141017915 10.1002/wics.101 10.1016/j.engappai.2018.05.001 10.1109/ICCV.2011.6126344 10.1109/TNSRE.2016.2627016 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
| DOI | 10.1109/JBHI.2022.3218453 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Nursing and Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2168-2208 |
| EndPage | 307 |
| ExternalDocumentID | 36315544 10_1109_JBHI_2022_3218453 9933441 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Zhejiang Provincial Natural Science Foundation of China grantid: LZ22F010003 – fundername: National Natural Science Foundation of China grantid: 61971168; 62071161; 62271181 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 6IL ADZIZ CGR CHZPO CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c3002-4bbd6b3ba59fe68fcc93ef01e85be52efb08ed3dff8fadf8fefbf6c6025b17f93 |
| IEDL.DBID | RIE |
| ISSN | 2168-2194 2168-2208 |
| IngestDate | Sun Sep 28 00:05:55 EDT 2025 Sun Nov 30 04:28:05 EST 2025 Thu Jan 02 22:52:45 EST 2025 Tue Nov 18 21:00:40 EST 2025 Sat Nov 29 04:18:31 EST 2025 Wed Aug 27 02:55:19 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3002-4bbd6b3ba59fe68fcc93ef01e85be52efb08ed3dff8fadf8fefbf6c6025b17f93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5206-9833 0000-0003-2128-2185 0000-0001-6881-9627 |
| PMID | 36315544 |
| PQID | 2760653644 |
| PQPubID | 85417 |
| PageCount | 12 |
| ParticipantIDs | pubmed_primary_36315544 ieee_primary_9933441 proquest_journals_2760653644 crossref_citationtrail_10_1109_JBHI_2022_3218453 proquest_miscellaneous_2730643639 crossref_primary_10_1109_JBHI_2022_3218453 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-Jan. 2023-1-00 2023-01-00 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-Jan. |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE journal of biomedical and health informatics |
| PublicationTitleAbbrev | JBHI |
| PublicationTitleAlternate | IEEE J Biomed Health Inform |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref20 ref22 ref21 Ziko (ref26) ref28 ref27 Ming (ref25) 2015 ref29 ref8 ref7 ref9 ref4 Taylor (ref35) 1967; 62 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref33 doi: 10.1016/j.inffus.2014.12.003 – ident: ref9 doi: 10.1088/1741-2552/aaf3f6 – ident: ref28 doi: 10.1109/PERCOM.2018.8444572 – ident: ref17 doi: 10.1201/9781351231954-19 – ident: ref27 doi: 10.1109/ICCV.2013.274 – ident: ref31 doi: 10.1109/ICCV.2013.274 – ident: ref2 doi: 10.1093/bioinformatics/btl242 – ident: ref18 doi: 10.1109/ICME.2018.8486446 – ident: ref24 doi: 10.1023/B:MACH.0000033120.25363.1e – ident: ref36 doi: 10.1145/1961189.1961199 – ident: ref22 doi: 10.1088/1741-2552/aab2f2 – ident: ref38 doi: 10.5271/sjweh.1815 – ident: ref16 doi: 10.1007/11566465_15 – ident: ref5 doi: 10.1109/TBME.2017.2742541 – ident: ref6 doi: 10.1109/TBME.2019.2913914 – volume-title: Bayesian Statistics and Its Applications: Bayesian Statistics and Its Applications year: 2015 ident: ref25 – ident: ref30 doi: 10.1109/ICDM.2017.150 – ident: ref3 doi: 10.1109/CVPR.2014.183 – ident: ref4 doi: 10.1109/CVPR.2017.547 – ident: ref32 doi: 10.1609/aaai.v30i1.10306 – ident: ref7 doi: 10.1016/j.bspc.2022.103555 – ident: ref8 doi: 10.1109/MCI.2015.2501545 – ident: ref1 doi: 10.1109/TNN.2010.2091281 – ident: ref12 doi: 10.1109/TPAMI.1982.4767298 – ident: ref10 doi: 10.1109/ACCESS.2020.2971600 – ident: ref20 doi: 10.1109/CVPR.2012.6247911 – ident: ref40 doi: 10.1016/j.ijpsycho.2019.08.012 – start-page: 11660 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref26 article-title: Laplacian regularized few-shot learning – volume: 62 start-page: 399 issue: 318 year: 1967 ident: ref35 article-title: On the Kolmogorov-Smirnov test for normality with mean and variance unknown publication-title: J. Amer. Stat. Assoc. doi: 10.1080/01621459.1967.10482916 – ident: ref34 doi: 10.4135/9781473933200 – ident: ref19 doi: 10.1126/science.290.5500.2319 – ident: ref14 doi: 10.1007/978-3-319-25040-3_64 – ident: ref29 doi: 10.1109/TBME.2019.2913914 – ident: ref13 doi: 10.1109/TNSRE.2020.2985996 – ident: ref37 doi: 10.1016/0165-1781(91)90027-M – ident: ref39 doi: 10.3390/s141017915 – ident: ref23 doi: 10.1002/wics.101 – ident: ref11 doi: 10.1016/j.engappai.2018.05.001 – ident: ref21 doi: 10.1109/ICCV.2011.6126344 – ident: ref15 doi: 10.1109/TNSRE.2016.2627016 |
| SSID | ssj0000816896 |
| Score | 2.483085 |
| Snippet | The use of transfer learning in brain-computer interfaces (BCIs) has potential applications. As electroencephalogram (EEG) signals vary among different... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 296 |
| SubjectTerms | Adaptive algorithms Algorithms Alignment Brain-computer interface Brain-Computer Interfaces Classification Covariance matrices Covariance matrix Datasets Divergence domain adaptive Domains EEG Electroencephalography Electroencephalography - methods Embedding Feature extraction Geometry Human-computer interface Humans Interfaces Machine learning Manifolds Manifolds (mathematics) Riemann manifold Signal Processing, Computer-Assisted subspace learning transfer learn-ing Transfer learning |
| Title | Domain Adaptive Algorithm Based on Multi-Manifold Embedded Distributed Alignment for Brain-Computer Interfaces |
| URI | https://ieeexplore.ieee.org/document/9933441 https://www.ncbi.nlm.nih.gov/pubmed/36315544 https://www.proquest.com/docview/2760653644 https://www.proquest.com/docview/2730643639 |
| Volume | 27 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2208 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816896 issn: 2168-2194 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9RAFD7UIuKLt3qJ1jKCT2LaJDOZZB53bUsVW3xQ2Lcw1zawm5Ttrr_fcybZgKCCL2FIJhdyzsy5nw_gvakoMSiINGhbpkJ6XHMZhQs1z60uTeZN7K7_tbq6qhcL9W0PPk61MN77mHzmj2kYY_mut1tylZ2gLOWCqtTvVZUcarUmf0oEkIhwXAUOUlyIYgxi5pk6-TK_-IzGYFEcc7JpSoLP4ZKTMBW_SaQIsfJ3bTNKnfPH__e9T-DRqF2y2cAOT2HPd8_gweUYPz-A7rRf6bZjM6dvaZ9js-V1v243Nys2R3HmWN-xWJKbXuquDf3SsbOV8bg5OXZKLXYJHQvHs2V7HdMIGOq8bE4wE-kOH4JFJ2OgVK_n8OP87Puni3REXEgtp61RGOOk4UaXKnhZB2sV9yHLfV0aXxY-mKz2jrsQ6qAdHvBMkFai4mTyKij-Ava7vvOvgAkhlEXL21USVS5ulSlU5UtpVc5zJFEC2e6vN3ZsR06oGMsmmiWZaohmDdGsGWmWwIfpltuhF8e_Jh8QQaaJIy0SONyRthlX611TVJJa9OJ3JvBuuozrjIInuvP9luaQrYY8oxJ4ObDE9OwdJ73-8zvfwEMCqR8cN4ewv1lv_Vu4b39u2rv1ETLzoj6KzPwL98vuEQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VBUEv5VFoAwWMxAmRNokdJz7u0lZb2F1xKFJvkZ8l0m5SbXf5_XicbKRKBYlLZCXOQ5mx5z0fwCdVYGKQY7GTOo8Zt37NJRgulDTVMleJVaG7_rSYz8vra_FjB74MtTDW2pB8Zk9wGGL5ptUbdJWdellKGVapP8oZy5KuWmvwqAQIiQDIlflB7Jci68OYaSJOv40nl94czLITilZNjgA6lFMUp-yeTAogK3_XN4PcuXj2f1_8HPZ7_ZKMOoZ4ATu2eQlPZn0E_QCas3Yp64aMjLzFnY6MFjftql7_WpKxF2iGtA0JRbnxTDa1axeGnC-V9duTIWfYZBfxsfx4tKhvQiIB8VovGSPQRLxFiCDBzegw2esV_Lw4v_o6iXvMhVhT3ByZUoYrqmQunOWl01pQ65LUlrmyeWadSkprqHGudNL4gz_juOZedVJp4QR9DbtN29gjIIwxob3tbQrulS6qhcpEYXOuRUpTT6IIku1fr3TfkBxxMRZVMEwSUSHNKqRZ1dMsgs_DLbddN45_TT5AggwTe1pEcLwlbdWv17sqKzg26fXfGcHH4bJfaRg-kY1tNzgHrTXPMyKCw44lhmdvOenNw-_8AE8nV7NpNb2cf38LewhZ37lxjmF3vdrYd_BY_17Xd6v3gaX_AOLi8HA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Domain+Adaptive+Algorithm+Based+on+Multi-Manifold+Embedded+Distributed+Alignment+for+Brain-Computer+Interfaces&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Gao%2C+Yunyuan&rft.au=Liu%2C+Yici&rft.au=She%2C+Qingshan&rft.au=Zhang%2C+Jianhai&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=2168-2194&rft.volume=27&rft.issue=1&rft.spage=296&rft.epage=307&rft_id=info:doi/10.1109%2FJBHI.2022.3218453&rft_id=info%3Apmid%2F36315544&rft.externalDocID=9933441 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |