Design and Application of a Gradient-Weighted Moving Finite Element Code II: in Two Dimensions
In part I the authors reported on the design of a robust and versatile gradient-weighted moving finite element (GWMFE) code in one dimension and on its application to a variety of PDEs and PDE systems. This companion paper does the same for the two-dimensional (2D) case. These moving node methods ar...
Uloženo v:
| Vydáno v: | SIAM journal on scientific computing Ročník 19; číslo 3; s. 766 - 798 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia, PA
Society for Industrial and Applied Mathematics
01.05.1998
|
| Témata: | |
| ISSN: | 1064-8275, 1095-7197 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In part I the authors reported on the design of a robust and versatile gradient-weighted moving finite element (GWMFE) code in one dimension and on its application to a variety of PDEs and PDE systems. This companion paper does the same for the two-dimensional (2D) case. These moving node methods are especially suited to problems which develop sharp moving fronts, especially problems where one needs to resolve the fine-scale structure of the fronts. The many potential pitfalls in the design of GWMFE codes and the special features of the implicit one-dimensional (1D) and 2D codes which contribute to their robustness and efficiency are discussed at length in part I; this paper concentrates on issues unique to the 2D case. Brief explanations are given of the variational interpretation of GWMFE, the geometrical-mechanical interpretation, simplified regularization terms, and the treatment of systems. A catalog of inner products which occur in GWMFE is given, with particular attention paid to those involving second-order operators. After presenting an example of the 2D phenomenon of grid collapse and discussing the need for long-time regularization, the paper reports on the application of the 2D code to several nontrivial problems---nonlinear arsenic diffusion in the manufacture of semiconductors, the drift-diffusion equations for semiconductor device simulation, the Buckley--Leverett black oil equations for reservoir simulation, and the motion of surfaces by mean curvature. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 1064-8275 1095-7197 |
| DOI: | 10.1137/S1064827594269561 |