Design and Application of a Gradient-Weighted Moving Finite Element Code II: in Two Dimensions
In part I the authors reported on the design of a robust and versatile gradient-weighted moving finite element (GWMFE) code in one dimension and on its application to a variety of PDEs and PDE systems. This companion paper does the same for the two-dimensional (2D) case. These moving node methods ar...
Gespeichert in:
| Veröffentlicht in: | SIAM journal on scientific computing Jg. 19; H. 3; S. 766 - 798 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Philadelphia, PA
Society for Industrial and Applied Mathematics
01.05.1998
|
| Schlagworte: | |
| ISSN: | 1064-8275, 1095-7197 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In part I the authors reported on the design of a robust and versatile gradient-weighted moving finite element (GWMFE) code in one dimension and on its application to a variety of PDEs and PDE systems. This companion paper does the same for the two-dimensional (2D) case. These moving node methods are especially suited to problems which develop sharp moving fronts, especially problems where one needs to resolve the fine-scale structure of the fronts. The many potential pitfalls in the design of GWMFE codes and the special features of the implicit one-dimensional (1D) and 2D codes which contribute to their robustness and efficiency are discussed at length in part I; this paper concentrates on issues unique to the 2D case. Brief explanations are given of the variational interpretation of GWMFE, the geometrical-mechanical interpretation, simplified regularization terms, and the treatment of systems. A catalog of inner products which occur in GWMFE is given, with particular attention paid to those involving second-order operators. After presenting an example of the 2D phenomenon of grid collapse and discussing the need for long-time regularization, the paper reports on the application of the 2D code to several nontrivial problems---nonlinear arsenic diffusion in the manufacture of semiconductors, the drift-diffusion equations for semiconductor device simulation, the Buckley--Leverett black oil equations for reservoir simulation, and the motion of surfaces by mean curvature. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 1064-8275 1095-7197 |
| DOI: | 10.1137/S1064827594269561 |