Convergence theory for the exact interpolation scheme with approximation vector as the first column of the prolongator and Rayleigh quotient iteration nonlinear smoother

We extend the analysis of the recently proposed nonlinear EIS scheme applied to the partial eigenvalue problem. We address the case where the Rayleigh quotient iteration is used as the smoother on the fine-level. Unlike in our previous theoretical results, where the smoother given by the linear inve...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applications of mathematics (Prague) Ročník 62; číslo 1; s. 49 - 73
Hlavní autori: Vank, Petr, Pultarová, Ivana
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2017
Springer Nature B.V
Predmet:
ISSN:0862-7940, 1572-9109
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We extend the analysis of the recently proposed nonlinear EIS scheme applied to the partial eigenvalue problem. We address the case where the Rayleigh quotient iteration is used as the smoother on the fine-level. Unlike in our previous theoretical results, where the smoother given by the linear inverse power method is assumed, we prove nonlinear speed-up when the approximation becomes close to the exact solution. The speed-up is cubic. Unlike existent convergence estimates for the Rayleigh quotient iteration, our estimates take advantage of the powerful effect of the coarse-space.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0862-7940
1572-9109
DOI:10.21136/AM.2017.0101-16