Planar Integer Linear Programming is NC Equivalent to Euclidean GCD

It is not known if planar integer linear programming is P-complete or if it is in NC, and the same can be said about the computation of the remainder sequence of the Euclidean algorithm applied to two integers. However, both computations are NC equivalent. The latter computational problem was reduce...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:SIAM journal on computing Ročník 27; číslo 4; s. 960 - 971
Hlavní autori: Shallcross, D. F., Pan, V. Y., Lin-Kriz, Y.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Philadelphia, PA Society for Industrial and Applied Mathematics 01.08.1998
Predmet:
ISSN:0097-5397, 1095-7111
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:It is not known if planar integer linear programming is P-complete or if it is in NC, and the same can be said about the computation of the remainder sequence of the Euclidean algorithm applied to two integers. However, both computations are NC equivalent. The latter computational problem was reduced in NC to the former one by Deng [Mathematical Programming: Complexity and Application, Ph.D. dissertation, Stanford University, Stanford, CA, 1989; Proc. ACM Symp. on Parallel Algorithms and Architectures, 1989,pp. 110--116]. We now prove the converse NC-reduction.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0097-5397
1095-7111
DOI:10.1137/S0097539794276841