Planar Integer Linear Programming is NC Equivalent to Euclidean GCD

It is not known if planar integer linear programming is P-complete or if it is in NC, and the same can be said about the computation of the remainder sequence of the Euclidean algorithm applied to two integers. However, both computations are NC equivalent. The latter computational problem was reduce...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on computing Ročník 27; číslo 4; s. 960 - 971
Hlavní autoři: Shallcross, D. F., Pan, V. Y., Lin-Kriz, Y.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia, PA Society for Industrial and Applied Mathematics 01.08.1998
Témata:
ISSN:0097-5397, 1095-7111
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:It is not known if planar integer linear programming is P-complete or if it is in NC, and the same can be said about the computation of the remainder sequence of the Euclidean algorithm applied to two integers. However, both computations are NC equivalent. The latter computational problem was reduced in NC to the former one by Deng [Mathematical Programming: Complexity and Application, Ph.D. dissertation, Stanford University, Stanford, CA, 1989; Proc. ACM Symp. on Parallel Algorithms and Architectures, 1989,pp. 110--116]. We now prove the converse NC-reduction.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0097-5397
1095-7111
DOI:10.1137/S0097539794276841