A multi-input and three-output wind speed point-interval prediction system based on constrained many-objective optimization problem

•The first three-output neural network for wind speed point-interval forecast.•A many-objective optimization problem with coverage constraint is developed.•The proposed CKNSGA-III perfectly solves many-objective optimization problem.•The theoretical proof of the Pareto front existence in CKNSGA-III...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information sciences Ročník 720; s. 122531
Hlavní autoři: Lv, Mengzheng, Wang, Jianzhou, Wang, Shuai, Wang, Kang, Zhao, Yang, Gao, Jialu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.12.2025
Témata:
ISSN:0020-0255
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •The first three-output neural network for wind speed point-interval forecast.•A many-objective optimization problem with coverage constraint is developed.•The proposed CKNSGA-III perfectly solves many-objective optimization problem.•The theoretical proof of the Pareto front existence in CKNSGA-III is given. Neural networks play a key role in wind speed deterministic and uncertainty analysis, significantly improving wind energy utilization efficiency and reducing power system costs. However, existing studies often rely on complex neural architectures, leading to excessive computational time, and fail to integrate point and interval predictions, disconnecting deterministic and uncertainty analysis, thereby affecting prediction efficiency. To address these issues, this paper presents a novel three-output wind speed prediction system via constrained multi-objective optimization. The framework minimizes mean squared error (MSE), mean absolute error (MAE), and prediction interval normalized average width (PINAW) while maximizing prediction interval coverage (PICP), with adjustable coverage constraints for diverse interval demands. Leveraging the outlier-robust extreme learning machine (ORELM) as the predictor, the system outputs point values and interval bounds simultaneously, addressing the volatility of wind speed time series and multi-output complexity. To solve the optimization problem, an improved non-dominated sorting genetic algorithm (CKNSGA-III) is proposed, integrating Henon chaotic mapping and a knee-oriented mechanism to boost optimization efficiency and accuracy. Experimental results show that, compared with existing methods, the proposed prediction system has significant advantages in interval prediction performance, point prediction accuracy, and runtime, and has passed significance and robustness tests.
AbstractList •The first three-output neural network for wind speed point-interval forecast.•A many-objective optimization problem with coverage constraint is developed.•The proposed CKNSGA-III perfectly solves many-objective optimization problem.•The theoretical proof of the Pareto front existence in CKNSGA-III is given. Neural networks play a key role in wind speed deterministic and uncertainty analysis, significantly improving wind energy utilization efficiency and reducing power system costs. However, existing studies often rely on complex neural architectures, leading to excessive computational time, and fail to integrate point and interval predictions, disconnecting deterministic and uncertainty analysis, thereby affecting prediction efficiency. To address these issues, this paper presents a novel three-output wind speed prediction system via constrained multi-objective optimization. The framework minimizes mean squared error (MSE), mean absolute error (MAE), and prediction interval normalized average width (PINAW) while maximizing prediction interval coverage (PICP), with adjustable coverage constraints for diverse interval demands. Leveraging the outlier-robust extreme learning machine (ORELM) as the predictor, the system outputs point values and interval bounds simultaneously, addressing the volatility of wind speed time series and multi-output complexity. To solve the optimization problem, an improved non-dominated sorting genetic algorithm (CKNSGA-III) is proposed, integrating Henon chaotic mapping and a knee-oriented mechanism to boost optimization efficiency and accuracy. Experimental results show that, compared with existing methods, the proposed prediction system has significant advantages in interval prediction performance, point prediction accuracy, and runtime, and has passed significance and robustness tests.
ArticleNumber 122531
Author Lv, Mengzheng
Gao, Jialu
Wang, Jianzhou
Wang, Kang
Wang, Shuai
Zhao, Yang
Author_xml – sequence: 1
  givenname: Mengzheng
  surname: Lv
  fullname: Lv, Mengzheng
  organization: School of Management Science and Engineering, Shandong University of Finance and Economics, Jinan 250014, China
– sequence: 2
  givenname: Jianzhou
  surname: Wang
  fullname: Wang, Jianzhou
  email: wangjianzhou@lzu.edu.cn
  organization: School of Statistics, Dongbei University of Finance and Economics, Dalian 116025, China
– sequence: 3
  givenname: Shuai
  surname: Wang
  fullname: Wang, Shuai
  organization: School of Statistics, Dongbei University of Finance and Economics, Dalian 116025, China
– sequence: 4
  givenname: Kang
  surname: Wang
  fullname: Wang, Kang
  organization: School of Statistics, Dongbei University of Finance and Economics, Dalian 116025, China
– sequence: 5
  givenname: Yang
  surname: Zhao
  fullname: Zhao, Yang
  organization: School of Statistics, Dongbei University of Finance and Economics, Dalian 116025, China
– sequence: 6
  givenname: Jialu
  orcidid: 0000-0002-6033-7532
  surname: Gao
  fullname: Gao, Jialu
  organization: Institute of Systems Engineering, Macau University of Science and Technology, Macau 999078, China
BookMark eNp9kMtqwzAQRbVIoUnaD-hOP2BXUvykqxD6gkA32QtZHtMxtmQkJSXd9serJF11kZWYyz1i5izIzFgDhDxwlnLGi8c-ReNTwUSeciHyFZ-ROWOCJTHJb8nC-54xlpVFMSc_azruh4AJmmkfqDItDZ8OILH7cAq-MCZ-AmjpZNGE2AvgDmqgk4MWdUBrqD_6ACNtlI-1OGtrfHAKTRxHZY6JbXqI1QNQOwUc8VuducnZZoDxjtx0avBw__cuye7lebd5S7Yfr--b9TbRoq5DwkEzoWtVt1nVaJXpTFcxKpRiDSubdlXlWZ1DrfKyq3Snu6yAqquU6EStWbtakvLyrXbWewed1BjOi5x2HSRn8qRP9jLqkyd98qIvkvwfOTkclTteZZ4uDMSLDghOeo1gdJTmogvZWrxC_wK-TJGO
CitedBy_id crossref_primary_10_1016_j_asoc_2025_113829
Cites_doi 10.1016/j.ins.2024.120549
10.1109/TNNLS.2013.2276053
10.1007/s10462-023-10470-y
10.1109/TSTE.2019.2907699
10.1109/TSMC.2024.3352665
10.1023/A:1022699029236
10.2307/1912100
10.1109/TIA.2023.3325798
10.1016/j.asoc.2019.105506
10.1109/TCYB.2021.3125071
10.1016/j.swevo.2019.05.011
10.1016/j.jmsy.2022.08.014
10.1016/j.energy.2023.129079
10.1007/BF00344251
10.1109/72.97934
10.1109/TEVC.2022.3144880
10.1109/TEVC.2014.2378512
10.1109/TEVC.2016.2564158
10.1038/323533a0
10.1016/j.ijforecast.2015.12.003
10.1109/TSTE.2019.2926147
10.1016/S0169-2070(96)00719-4
10.1109/TNN.2010.2096824
10.1109/IJCNN.2004.1380068
10.1016/j.renene.2025.122653
10.1109/4235.996017
10.1016/j.energy.2025.135210
10.1162/neco.1997.9.8.1735
10.2307/2532360
10.1109/TEVC.2013.2281535
10.1016/j.enconman.2024.118909
10.1109/TSTE.2017.2774195
10.1080/07350015.1995.10524599
ContentType Journal Article
Copyright 2025 Elsevier Inc.
Copyright_xml – notice: 2025 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2025.122531
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
ExternalDocumentID 10_1016_j_ins_2025_122531
S0020025525006632
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
77I
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADGUI
ADJOM
ADMUD
ADNMO
ADTZH
ADVLN
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
~HD
9DU
AAYXX
CITATION
ID FETCH-LOGICAL-c299t-1ec02c9a9d48bca4c4c8ec06aa0b07bd385495e9a57f8cfcf46e8f8a2f29c0d3
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001544346000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sat Nov 29 07:34:39 EST 2025
Tue Nov 18 22:19:47 EST 2025
Sat Oct 04 17:01:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Three-output neural network
Constrained many-objective optimization problem
Advanced optimization algorithm
Interval prediction
Wind speed point prediction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c299t-1ec02c9a9d48bca4c4c8ec06aa0b07bd385495e9a57f8cfcf46e8f8a2f29c0d3
ORCID 0000-0002-6033-7532
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2025_122531
crossref_primary_10_1016_j_ins_2025_122531
elsevier_sciencedirect_doi_10_1016_j_ins_2025_122531
PublicationCentury 2000
PublicationDate December 2025
2025-12-00
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: December 2025
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Heskes (b0020) 1997
Zhu, He, Gao (b0105) 2023; 283
Deb, Jain (b0135) 2014; 18
Harvey, Leybourne, Newbold (b0235) 1997; 13
Zhang, Luo (b0070) 2015
Hochreiter, Schmidhuber (b0195) 1997
G. Bin Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine: A new learning scheme of feedforward neural networks, in: IEEE International Conference on Neural Networks - Conference Proceedings, 2004. doi
Shi, Liang, Dinavahi (b0040) 2018
Li, Tang, Xue, Saeed, Hu (b0095) 2020
Rajwar, Deep, Das (b0120) 2023
Wang, Tang, Wen, Ma (b0065) 2019
Rao, Box, Jenkins (b0220) 1972
GWEC, Global Wind Report 2024, Global Wind Energy Council, 2024. www.gwec.net.
Kim, Kim (b0110) 2016; 32
Zhang, Zhao, Pan, Zhang (b0080) 2020
Rumelhart, Hinton, Williams (b0185) 1986
Elman (b0210) 1991
Wang, Jiang, Shu, He (b0075) 2025; 320
Wang, Zhang, Siarry, Liu, Królczyk, Hua, Brumercik, Li (b0155) 2024
Specht (b0205) 1991
Phan, Wu, Phan (b0035) 2024
Wang, Lv, Li, Zeng (b0175) 2023
Odell, Anderson, D’Agostino (b0015) 1992
Zhang, Tian, Jin (b0170) 2015; 19
Jaeger (b0190) 2002
Chiu, Yen, Juan (b0165) 2016
Li, Zhang, Wang, Wang, Ishibuchi (b0030) 2022
Liu, Wang, Niu, Ji, Gu (b0090) 2024
Coello Coello, Pulido, Lechuga (b0130) 2004
Cui, Chang, Zhang, Cai, Zhang (b0140) 2019
Nix, Weigend (b0010) 1994
Lv, Wang, Wang, Gao, Guo (b0145) 2024; 670
Chung, Gulcehre, Cho, Bengio (b0200) 2015, 2015.
He, Zhu, Wang (b0050) 2024; 54
K. Deb, Multi-Objective Optimization using Evolutionary Algorithms Kalyanmoy, 2001.
Deb, Pratap, Agarwal, Meyarivan (b0125) 2002
Diebold, Mariano (b0230) 1995; 13
.
Yang, Hao, Hao (b0100) 2023
Yu, Ma, Jin, Du, Liu, Zhang (b0150) 2022
Lv, Wang, Wang, Zhao, Gao, Wang (b0045) 2024; 319
Wang, Shu, Xu (b0085) 2025; 244
Yu, Jin, Olhofer, Liu, Du (b0160) 2023
Khosravi, Nahavandi, Creighton, Atiya (b0025) 2011; 22
Peng, Cheng, Zhang, Shao, Wang, Shen (b0060) 2022
Quan, Srinivasan, Khosravi (b0115) 2014; 25
Zhou, Wang, Guo, Watada (b0180) 2021
Fukushima (b0215) 1980
Zhang (10.1016/j.ins.2025.122531_b0080) 2020
Deb (10.1016/j.ins.2025.122531_b0125) 2002
Lv (10.1016/j.ins.2025.122531_b0045) 2024; 319
10.1016/j.ins.2025.122531_b0055
Zhou (10.1016/j.ins.2025.122531_b0180) 2021
Heskes (10.1016/j.ins.2025.122531_b0020) 1997
Phan (10.1016/j.ins.2025.122531_b0035) 2024
Zhang (10.1016/j.ins.2025.122531_b0170) 2015; 19
Lv (10.1016/j.ins.2025.122531_b0145) 2024; 670
Wang (10.1016/j.ins.2025.122531_b0175) 2023
Diebold (10.1016/j.ins.2025.122531_b0230) 1995; 13
Wang (10.1016/j.ins.2025.122531_b0155) 2024
Chiu (10.1016/j.ins.2025.122531_b0165) 2016
Wang (10.1016/j.ins.2025.122531_b0065) 2019
Rao (10.1016/j.ins.2025.122531_b0220) 1972
Peng (10.1016/j.ins.2025.122531_b0060) 2022
Elman (10.1016/j.ins.2025.122531_b0210) 1991
Cui (10.1016/j.ins.2025.122531_b0140) 2019
Yu (10.1016/j.ins.2025.122531_b0160) 2023
Specht (10.1016/j.ins.2025.122531_b0205) 1991
Nix (10.1016/j.ins.2025.122531_b0010) 1994
Yu (10.1016/j.ins.2025.122531_b0150) 2022
10.1016/j.ins.2025.122531_b0005
10.1016/j.ins.2025.122531_b0225
Khosravi (10.1016/j.ins.2025.122531_b0025) 2011; 22
Coello Coello (10.1016/j.ins.2025.122531_b0130) 2004
Kim (10.1016/j.ins.2025.122531_b0110) 2016; 32
Wang (10.1016/j.ins.2025.122531_b0085) 2025; 244
Li (10.1016/j.ins.2025.122531_b0095) 2020
Shi (10.1016/j.ins.2025.122531_b0040) 2018
Rajwar (10.1016/j.ins.2025.122531_b0120) 2023
Odell (10.1016/j.ins.2025.122531_b0015) 1992
Liu (10.1016/j.ins.2025.122531_b0090) 2024
Harvey (10.1016/j.ins.2025.122531_b0235) 1997; 13
Chung (10.1016/j.ins.2025.122531_b0200) 2015
Li (10.1016/j.ins.2025.122531_b0030) 2022
Yang (10.1016/j.ins.2025.122531_b0100) 2023
Jaeger (10.1016/j.ins.2025.122531_b0190) 2002
Zhang (10.1016/j.ins.2025.122531_b0070) 2015
Zhu (10.1016/j.ins.2025.122531_b0105) 2023; 283
Wang (10.1016/j.ins.2025.122531_b0075) 2025; 320
Rumelhart (10.1016/j.ins.2025.122531_b0185) 1986
Fukushima (10.1016/j.ins.2025.122531_b0215) 1980
Quan (10.1016/j.ins.2025.122531_b0115) 2014; 25
He (10.1016/j.ins.2025.122531_b0050) 2024; 54
Hochreiter (10.1016/j.ins.2025.122531_b0195) 1997
Deb (10.1016/j.ins.2025.122531_b0135) 2014; 18
References_xml – year: 2016
  ident: b0165
  article-title: Minimum Manhattan distance approach to multiple criteria decision making in Multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– year: 1994
  ident: b0010
  article-title: Estimating the mean and variance of the target probability distribution
  publication-title: IEEE International Conference on Neural Networks - Conference Proceedings
– year: 2023
  ident: b0160
  article-title: Solution set augmentation for knee identification in multiobjective decision analysis
  publication-title: IEEE Trans. Cybern.
– year: 1997
  ident: b0195
  article-title: Long short-term memory
  publication-title: Neural Comput.
– year: 2015, 2015.
  ident: b0200
  article-title: Gated feedback recurrent neural networks
  publication-title: 32nd International Conference on Machine Learning
– year: 1991
  ident: b0205
  article-title: A general regression neural network
  publication-title: IEEE Trans. Neural Netw.
– year: 2018
  ident: b0040
  article-title: Direct interval forecast of uncertain wind power based on recurrent neural networks
  publication-title: IEEE Trans. Sustainable Energy
– year: 1980
  ident: b0215
  article-title: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
  publication-title: Biol. Cybern.
– volume: 13
  start-page: 253
  year: 1995
  end-page: 263
  ident: b0230
  article-title: Comparing predictive accuracy
  publication-title: J. Bus. Econ. Stat.
– year: 2002
  ident: b0190
  article-title: Adaptive Nonlinear System Identification with Echo State Networks
  publication-title: NIPS 2002: Proceedings of the 15th International Conference on Neural Information Processing Systems
– volume: 54
  start-page: 3069
  year: 2024
  end-page: 3083
  ident: b0050
  article-title: A novel neural network-based multiobjective evolution lower upper bound estimation method for electricity load interval forecast
  publication-title: IEEE Trans. Sys., Man, Cybernetics: Syst
– year: 2024
  ident: b0090
  article-title: A point-interval wind speed forecasting system based on fuzzy theory and neural networks architecture searching strategy
  publication-title: Eng. Appl. Artif. Intel.
– volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: b0135
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach , part i : solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
– year: 1972
  ident: b0220
  article-title: Time series analysis forecasting and control
  publication-title: Econometrica
– reference: GWEC, Global Wind Report 2024, Global Wind Energy Council, 2024. www.gwec.net.
– volume: 22
  start-page: 337
  year: 2011
  end-page: 346
  ident: b0025
  article-title: Lower upper bound estimation method for construction of neural network-based prediction intervals
  publication-title: IEEE Trans. Neural Netw.
– year: 2019
  ident: b0065
  article-title: A hybrid intelligent approach for constructing landslide displacement prediction intervals
  publication-title: Applied Soft Computing Journal.
– reference: G. Bin Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine: A new learning scheme of feedforward neural networks, in: IEEE International Conference on Neural Networks - Conference Proceedings, 2004. doi:
– volume: 319
  year: 2024
  ident: b0045
  article-title: A multi-input and dual-output wind speed interval forecasting system based on constrained multi-objective optimization problem and model averaging
  publication-title: Energ. Conver. Manage.
– year: 1986
  ident: b0185
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– year: 2023
  ident: b0100
  article-title: Innovative ensemble system based on mixed frequency modeling for wind speed point and interval forecasting
  publication-title: Inf. Sci.
– year: 2022
  ident: b0030
  article-title: An evolutionary multiobjective knee-based lower upper bound estimation method for wind speed interval forecast
  publication-title: IEEE Trans. Evol. Comput.
– year: 2019
  ident: b0140
  article-title: Improved NSGA-III with selection-and-elimination operator
  publication-title: Swarm Evol. Comput.
– year: 2022
  ident: b0060
  article-title: Industrial big data-driven mechanical performance prediction for hot-rolling steel using lower upper bound estimation method
  publication-title: J. Manuf. Syst.
– volume: 25
  start-page: 303
  year: 2014
  end-page: 315
  ident: b0115
  article-title: Short-term load and wind power forecasting using neural network-based prediction intervals
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– year: 2015
  ident: b0070
  article-title: Outlier-robust extreme learning machine for regression problems
  publication-title: Neurocomputing
– volume: 320
  year: 2025
  ident: b0075
  article-title: A multi-factor clustering integration paradigm for wind speed point-interval prediction based on feature selection and optimized inverted transformer
  publication-title: Energy
– volume: 19
  start-page: 761
  year: 2015
  end-page: 776
  ident: b0170
  article-title: A knee point-driven evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 32
  start-page: 669
  year: 2016
  end-page: 679
  ident: b0110
  article-title: A new metric of absolute percentage error for intermittent demand forecasts
  publication-title: Int. J. Forecast.
– year: 2022
  ident: b0150
  article-title: A survey on knee-oriented multiobjective evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
– year: 2021
  ident: b0180
  article-title: Multi-objective prediction intervals for wind power forecast based on deep neural networks
  publication-title: Inf. Sci.
– year: 1997
  ident: b0020
  article-title: Practical confidence and prediction intervals, in
  publication-title: Adv. Neural Inf. Proces. Syst.
– year: 2023
  ident: b0120
  article-title: An exhaustive review of the metaheuristic algorithms for search and optimization: taxonomy, applications, and open challenges
  publication-title: Artif. Intell. Rev.
– reference: K. Deb, Multi-Objective Optimization using Evolutionary Algorithms Kalyanmoy, 2001.
– volume: 670
  year: 2024
  ident: b0145
  article-title: Developing a hybrid system for stock selection and portfolio optimization with many-objective optimization based on deep learning and improved NSGA-III
  publication-title: Inf. Sci.
– year: 2002
  ident: b0125
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– year: 2023
  ident: b0175
  article-title: Multivariate selection-combination short-term wind speed forecasting system based on convolution-recurrent network and multi-objective chameleon swarm algorithm
  publication-title: Expert Syst. Appl.
– volume: 283
  year: 2023
  ident: b0105
  article-title: Wind power interval and point prediction model using neural network based multi-objective optimization
  publication-title: Energy
– reference: .
– year: 1991
  ident: b0210
  article-title: Distributed representations, simple recurrent networks, and grammatical structure
  publication-title: Mach. Learn.
– year: 2024
  ident: b0155
  article-title: A nonlinear African vulture optimization algorithm combining Henon chaotic mapping theory and reverse learning competition strategy
  publication-title: Expert Syst. Appl.
– year: 2024
  ident: b0035
  article-title: Enhancing one-day-ahead probabilistic solar power forecast with a hybrid transformer-LUBE model and missing data imputation
  publication-title: IEEE Trans. Ind. Appl.
– year: 2020
  ident: b0080
  article-title: Wind speed interval prediction based on lorenz disturbance distribution
  publication-title: IEEE Trans. Sustainable Energy
– year: 2004
  ident: b0130
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
– year: 1992
  ident: b0015
  article-title: Maximum likelihood estimation for interval-censored data using a weibull- based accelerated failure time model
  publication-title: Biometrics
– volume: 244
  year: 2025
  ident: b0085
  article-title: A point-interval wind speed prediction model based on entropy clustering and hybrid optimization weighted strategy
  publication-title: Renew. Energy
– year: 2020
  ident: b0095
  article-title: Short-Term Wind speed Interval Prediction based on Ensemble GRU Model
  publication-title: IEEE Trans. Sustainable Energy
– volume: 13
  start-page: 281
  year: 1997
  end-page: 291
  ident: b0235
  article-title: Testing the equality of prediction mean squared errors
  publication-title: Int. J. Forecast.
– volume: 670
  year: 2024
  ident: 10.1016/j.ins.2025.122531_b0145
  article-title: Developing a hybrid system for stock selection and portfolio optimization with many-objective optimization based on deep learning and improved NSGA-III
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2024.120549
– year: 2023
  ident: 10.1016/j.ins.2025.122531_b0175
  article-title: Multivariate selection-combination short-term wind speed forecasting system based on convolution-recurrent network and multi-objective chameleon swarm algorithm
  publication-title: Expert Syst. Appl.
– volume: 25
  start-page: 303
  year: 2014
  ident: 10.1016/j.ins.2025.122531_b0115
  article-title: Short-term load and wind power forecasting using neural network-based prediction intervals
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2013.2276053
– year: 2015
  ident: 10.1016/j.ins.2025.122531_b0070
  article-title: Outlier-robust extreme learning machine for regression problems
  publication-title: Neurocomputing
– year: 2002
  ident: 10.1016/j.ins.2025.122531_b0190
  article-title: Adaptive Nonlinear System Identification with Echo State Networks
– year: 2023
  ident: 10.1016/j.ins.2025.122531_b0120
  article-title: An exhaustive review of the metaheuristic algorithms for search and optimization: taxonomy, applications, and open challenges
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-023-10470-y
– year: 2020
  ident: 10.1016/j.ins.2025.122531_b0080
  article-title: Wind speed interval prediction based on lorenz disturbance distribution
  publication-title: IEEE Trans. Sustainable Energy
  doi: 10.1109/TSTE.2019.2907699
– volume: 54
  start-page: 3069
  year: 2024
  ident: 10.1016/j.ins.2025.122531_b0050
  article-title: A novel neural network-based multiobjective evolution lower upper bound estimation method for electricity load interval forecast
  publication-title: IEEE Trans. Sys., Man, Cybernetics: Syst
  doi: 10.1109/TSMC.2024.3352665
– year: 1991
  ident: 10.1016/j.ins.2025.122531_b0210
  article-title: Distributed representations, simple recurrent networks, and grammatical structure
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022699029236
– year: 1972
  ident: 10.1016/j.ins.2025.122531_b0220
  article-title: Time series analysis forecasting and control
  publication-title: Econometrica
  doi: 10.2307/1912100
– year: 2024
  ident: 10.1016/j.ins.2025.122531_b0035
  article-title: Enhancing one-day-ahead probabilistic solar power forecast with a hybrid transformer-LUBE model and missing data imputation
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2023.3325798
– year: 2019
  ident: 10.1016/j.ins.2025.122531_b0065
  article-title: A hybrid intelligent approach for constructing landslide displacement prediction intervals
  publication-title: Applied Soft Computing Journal.
  doi: 10.1016/j.asoc.2019.105506
– year: 2024
  ident: 10.1016/j.ins.2025.122531_b0090
  article-title: A point-interval wind speed forecasting system based on fuzzy theory and neural networks architecture searching strategy
  publication-title: Eng. Appl. Artif. Intel.
– year: 2023
  ident: 10.1016/j.ins.2025.122531_b0160
  article-title: Solution set augmentation for knee identification in multiobjective decision analysis
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3125071
– year: 2019
  ident: 10.1016/j.ins.2025.122531_b0140
  article-title: Improved NSGA-III with selection-and-elimination operator
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2019.05.011
– year: 2022
  ident: 10.1016/j.ins.2025.122531_b0060
  article-title: Industrial big data-driven mechanical performance prediction for hot-rolling steel using lower upper bound estimation method
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2022.08.014
– volume: 283
  year: 2023
  ident: 10.1016/j.ins.2025.122531_b0105
  article-title: Wind power interval and point prediction model using neural network based multi-objective optimization
  publication-title: Energy
  doi: 10.1016/j.energy.2023.129079
– year: 1980
  ident: 10.1016/j.ins.2025.122531_b0215
  article-title: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00344251
– year: 2023
  ident: 10.1016/j.ins.2025.122531_b0100
  article-title: Innovative ensemble system based on mixed frequency modeling for wind speed point and interval forecasting
  publication-title: Inf. Sci.
– year: 1991
  ident: 10.1016/j.ins.2025.122531_b0205
  article-title: A general regression neural network
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.97934
– year: 2022
  ident: 10.1016/j.ins.2025.122531_b0150
  article-title: A survey on knee-oriented multiobjective evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2022.3144880
– year: 2022
  ident: 10.1016/j.ins.2025.122531_b0030
  article-title: An evolutionary multiobjective knee-based lower upper bound estimation method for wind speed interval forecast
  publication-title: IEEE Trans. Evol. Comput.
– year: 2004
  ident: 10.1016/j.ins.2025.122531_b0130
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 19
  start-page: 761
  year: 2015
  ident: 10.1016/j.ins.2025.122531_b0170
  article-title: A knee point-driven evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2378512
– year: 2016
  ident: 10.1016/j.ins.2025.122531_b0165
  article-title: Minimum Manhattan distance approach to multiple criteria decision making in Multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2564158
– year: 2021
  ident: 10.1016/j.ins.2025.122531_b0180
  article-title: Multi-objective prediction intervals for wind power forecast based on deep neural networks
  publication-title: Inf. Sci.
– year: 1997
  ident: 10.1016/j.ins.2025.122531_b0020
  article-title: Practical confidence and prediction intervals, in
  publication-title: Adv. Neural Inf. Proces. Syst.
– year: 1986
  ident: 10.1016/j.ins.2025.122531_b0185
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– ident: 10.1016/j.ins.2025.122531_b0225
– volume: 32
  start-page: 669
  year: 2016
  ident: 10.1016/j.ins.2025.122531_b0110
  article-title: A new metric of absolute percentage error for intermittent demand forecasts
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2015.12.003
– year: 2020
  ident: 10.1016/j.ins.2025.122531_b0095
  article-title: Short-Term Wind speed Interval Prediction based on Ensemble GRU Model
  publication-title: IEEE Trans. Sustainable Energy
  doi: 10.1109/TSTE.2019.2926147
– volume: 13
  start-page: 281
  year: 1997
  ident: 10.1016/j.ins.2025.122531_b0235
  article-title: Testing the equality of prediction mean squared errors
  publication-title: Int. J. Forecast.
  doi: 10.1016/S0169-2070(96)00719-4
– volume: 22
  start-page: 337
  year: 2011
  ident: 10.1016/j.ins.2025.122531_b0025
  article-title: Lower upper bound estimation method for construction of neural network-based prediction intervals
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2010.2096824
– ident: 10.1016/j.ins.2025.122531_b0005
– year: 1994
  ident: 10.1016/j.ins.2025.122531_b0010
  article-title: Estimating the mean and variance of the target probability distribution
  publication-title: IEEE International Conference on Neural Networks - Conference Proceedings
– ident: 10.1016/j.ins.2025.122531_b0055
  doi: 10.1109/IJCNN.2004.1380068
– volume: 244
  year: 2025
  ident: 10.1016/j.ins.2025.122531_b0085
  article-title: A point-interval wind speed prediction model based on entropy clustering and hybrid optimization weighted strategy
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2025.122653
– year: 2002
  ident: 10.1016/j.ins.2025.122531_b0125
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 320
  year: 2025
  ident: 10.1016/j.ins.2025.122531_b0075
  article-title: A multi-factor clustering integration paradigm for wind speed point-interval prediction based on feature selection and optimized inverted transformer
  publication-title: Energy
  doi: 10.1016/j.energy.2025.135210
– year: 1997
  ident: 10.1016/j.ins.2025.122531_b0195
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– year: 2024
  ident: 10.1016/j.ins.2025.122531_b0155
  article-title: A nonlinear African vulture optimization algorithm combining Henon chaotic mapping theory and reverse learning competition strategy
  publication-title: Expert Syst. Appl.
– year: 1992
  ident: 10.1016/j.ins.2025.122531_b0015
  article-title: Maximum likelihood estimation for interval-censored data using a weibull- based accelerated failure time model
  publication-title: Biometrics
  doi: 10.2307/2532360
– volume: 18
  start-page: 577
  year: 2014
  ident: 10.1016/j.ins.2025.122531_b0135
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach , part i : solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281535
– volume: 319
  year: 2024
  ident: 10.1016/j.ins.2025.122531_b0045
  article-title: A multi-input and dual-output wind speed interval forecasting system based on constrained multi-objective optimization problem and model averaging
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2024.118909
– year: 2018
  ident: 10.1016/j.ins.2025.122531_b0040
  article-title: Direct interval forecast of uncertain wind power based on recurrent neural networks
  publication-title: IEEE Trans. Sustainable Energy
  doi: 10.1109/TSTE.2017.2774195
– year: 2015
  ident: 10.1016/j.ins.2025.122531_b0200
  article-title: Gated feedback recurrent neural networks
– volume: 13
  start-page: 253
  year: 1995
  ident: 10.1016/j.ins.2025.122531_b0230
  article-title: Comparing predictive accuracy
  publication-title: J. Bus. Econ. Stat.
  doi: 10.1080/07350015.1995.10524599
SSID ssj0004766
Score 2.4892426
Snippet •The first three-output neural network for wind speed point-interval forecast.•A many-objective optimization problem with coverage constraint is developed.•The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 122531
SubjectTerms Advanced optimization algorithm
Constrained many-objective optimization problem
Interval prediction
Three-output neural network
Wind speed point prediction
Title A multi-input and three-output wind speed point-interval prediction system based on constrained many-objective optimization problem
URI https://dx.doi.org/10.1016/j.ins.2025.122531
Volume 720
WOSCitedRecordID wos001544346000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004766
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKxwEOaAzQBmzyAXGgMkrcfNjHCg1tgCYkeugtchyHptqSqCRl2pW_gf-X59hp3cIQO3CJkqfkxcr75X3Y7z0j9CqOeC7kOCMpWH8S8IwREWWURNqc-Jny01x2m03EFxdsNuOfB4OffS3M6jIuS3Z9zev_KmqggbB16ewdxL1mCgQ4B6HDEcQOx38S_MQkCZKirNvGJkgulSJV22jC90LPlNdgtEZ1VZQNKbqsR12QtdSLNh0eTH_nkTZxmV5OkNqL1JtJwOUVqA9SpQujKUcV6JwrW8w5stvTuB6vrXcybI0iWbvxn1bdfKwqv97MlTWh3eS-TRMG6N7Mq3aX_mXeimKX-FFYBnYKg4ZOOkhfUuARHdy4ajmmnqNYfdA7xlz8pvPN9MMCAhXdfp2Gbzf3bvfX3rF762zEPtFtkQCLRLNIDIt7aI_GIWdDtDc5P5192BTcxmYRvB93v1zeJQ7ujOPPDo_jxEz30SMbfeCJQc1jNFDlAXro9KQ8QMe2kgW_xo7osLUBT9CPCXbwhQFf2MUX1vjCHb7wNr7wBl_Y4At3-MJw7eALb-MLu_jCFl9P0fT96fTdGbE7eRAJ7k5DfCU9KrngWcBSKQIZSAakSAgv9eI0G7MQAnXFRRjnTOYyDyLFciZoTrn0svEzNCyrUh0iHOZi7KlI951kAYQ2nKZh6seCKZUGYSiOkNd_7UTaLvd6_JfJrVI-Qm_Wj9Smxcvfbg56ESb2pzG-ZwJwvP2x53d5xwv0YPOXvETDZtmqY3Rfrpri2_LEYvEXTz65kg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-input+and+three-output+wind+speed+point-interval+prediction+system+based+on+constrained+many-objective+optimization+problem&rft.jtitle=Information+sciences&rft.au=Lv%2C+Mengzheng&rft.au=Wang%2C+Jianzhou&rft.au=Wang%2C+Shuai&rft.au=Wang%2C+Kang&rft.date=2025-12-01&rft.issn=0020-0255&rft.volume=720&rft.spage=122531&rft_id=info:doi/10.1016%2Fj.ins.2025.122531&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2025_122531
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon