Kernel-Based Robust Bias-Correction Fuzzy Weighted C-Ordered-Means Clustering Algorithm
The spatial constrained Fuzzy C-means clustering (FCM) is an effective algorithm for image segmentation. Its background information improves the insensitivity to noise to some extent. In addition, the membership degree of Euclidean distance is not suitable for revealing the non-Euclidean structure o...
Saved in:
| Published in: | Symmetry (Basel) Vol. 11; no. 6; p. 753 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.06.2019
|
| Subjects: | |
| ISSN: | 2073-8994, 2073-8994 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The spatial constrained Fuzzy C-means clustering (FCM) is an effective algorithm for image segmentation. Its background information improves the insensitivity to noise to some extent. In addition, the membership degree of Euclidean distance is not suitable for revealing the non-Euclidean structure of input data, since it still lacks enough robustness to noise and outliers. In order to overcome the problem above, this paper proposes a new kernel-based algorithm based on the Kernel-induced Distance Measure, which we call it Kernel-based Robust Bias-correction Fuzzy Weighted C-ordered-means Clustering Algorithm (KBFWCM). In the construction of the objective function, KBFWCM algorithm comprehensively takes into account that the spatial constrained FCM clustering algorithm is insensitive to image noise and involves a highly intensive computation. Aiming at the insensitivity of spatial constrained FCM clustering algorithm to noise and its image detail processing, the KBFWCM algorithm proposes a comprehensive algorithm combining fuzzy local similarity measures (space and grayscale) and the typicality of data attributes. Aiming at the poor robustness of the original algorithm to noise and outliers and its highly intensive computation, a Kernel-based clustering method that includes a class of robust non-Euclidean distance measures is proposed in this paper. The experimental results show that the KBFWCM algorithm has a stronger denoising and robust effect on noise image. |
|---|---|
| AbstractList | The spatial constrained Fuzzy C-means clustering (FCM) is an effective algorithm for image segmentation. Its background information improves the insensitivity to noise to some extent. In addition, the membership degree of Euclidean distance is not suitable for revealing the non-Euclidean structure of input data, since it still lacks enough robustness to noise and outliers. In order to overcome the problem above, this paper proposes a new kernel-based algorithm based on the Kernel-induced Distance Measure, which we call it Kernel-based Robust Bias-correction Fuzzy Weighted C-ordered-means Clustering Algorithm (KBFWCM). In the construction of the objective function, KBFWCM algorithm comprehensively takes into account that the spatial constrained FCM clustering algorithm is insensitive to image noise and involves a highly intensive computation. Aiming at the insensitivity of spatial constrained FCM clustering algorithm to noise and its image detail processing, the KBFWCM algorithm proposes a comprehensive algorithm combining fuzzy local similarity measures (space and grayscale) and the typicality of data attributes. Aiming at the poor robustness of the original algorithm to noise and outliers and its highly intensive computation, a Kernel-based clustering method that includes a class of robust non-Euclidean distance measures is proposed in this paper. The experimental results show that the KBFWCM algorithm has a stronger denoising and robust effect on noise image. |
| Author | Chen, Jun Zhang, Wenyuan Liu, Jiale Huang, Tianyu Guo, Xijuan |
| Author_xml | – sequence: 1 givenname: Wenyuan surname: Zhang fullname: Zhang, Wenyuan – sequence: 2 givenname: Xijuan surname: Guo fullname: Guo, Xijuan – sequence: 3 givenname: Tianyu orcidid: 0000-0001-7495-4489 surname: Huang fullname: Huang, Tianyu – sequence: 4 givenname: Jiale surname: Liu fullname: Liu, Jiale – sequence: 5 givenname: Jun surname: Chen fullname: Chen, Jun |
| BookMark | eNptkE1PAjEQhhuDiYic_AObeDTV7na7H0fYiBoxJIaE46YfUyhZtth2D_DrXYIHYpzLzOF5Z955b9GgtS0gdB-TJ0pL8uwPuzgmGckZvULDhOQUF2WZDi7mGzT2fkv6YoSlGRmi1Qe4Fho85R5U9GVF50M0NdzjyjoHMhjbRrPueDxEKzDrTeipCi-cAgcKfwJvfVQ1vQicadfRpFlbZ8Jmd4euNW88jH_7CC1nL8vqDc8Xr-_VZI5lUhYBa5GphGlGIVNM5FqnBUmlolrkSmZxynrXIGMuSpkIDlAIWYKgKk1BKs3pCD2c1-6d_e7Ah3prO9f2F-uEMZLkNKFZT8VnSjrrvQNdSxP46bXguGnqmNSnBOuLBHvN4x_N3pkdd4d_6R-iGHV2 |
| CitedBy_id | crossref_primary_10_1016_j_dsp_2024_104801 crossref_primary_10_1016_j_cviu_2023_103765 crossref_primary_10_1016_j_asoc_2020_106318 crossref_primary_10_1016_j_engappai_2022_104672 crossref_primary_10_1016_j_bspc_2023_105348 crossref_primary_10_1109_TFUZZ_2020_3044253 crossref_primary_10_3390_electronics13010057 crossref_primary_10_1016_j_asoc_2021_107245 crossref_primary_10_1109_TFUZZ_2023_3235392 |
| Cites_doi | 10.1109/42.996338 10.1109/TMI.2004.824224 10.1016/0022-247X(79)90039-8 10.1016/S0969-8043(98)00136-5 10.1002/0471725250.ch8 10.1109/TIP.2010.2040763 10.1109/72.914517 10.1109/JSTARS.2018.2792841 10.1109/TFUZZ.2015.2505328 10.1016/j.autcon.2017.08.017 10.1109/TFUZZ.2004.840099 10.1109/TBME.2015.2462750 10.1109/91.531779 10.1162/089976698300017467 10.1007/978-81-322-2529-4_55 10.1016/j.compmedimag.2008.08.004 10.1109/91.227387 10.1109/TIP.2011.2170702 10.1109/21.87068 10.1016/j.patcog.2006.07.011 10.1016/j.fss.2017.01.001 10.1109/TFUZZ.2013.2249072 10.1007/BF02339490 10.1109/TPAMI.2015.2513407 10.1109/91.413225 10.1016/0098-3004(84)90020-7 10.1109/91.873580 10.1109/34.1000236 10.1016/S0031-3203(01)00197-2 10.1080/01969727308546047 10.1016/j.patrec.2008.04.016 10.1109/TPAMI.2014.2303095 10.1006/cviu.2001.0951 10.1109/TGRS.2015.2480863 10.1109/TPAMI.2016.2537320 10.1142/S021800141850012X 10.1016/j.dsp.2012.09.016 10.1109/TNN.2002.804311 10.1109/TFUZZ.2011.2170175 10.1109/TFUZZ.2018.2796074 10.1109/TPAMI.1980.4766964 10.1016/j.compmedimag.2005.10.001 10.1049/iet-ipr.2015.0236 10.1109/TFUZZ.2015.2513091 10.1002/wcm.2762 10.1109/ICCV.2015.209 10.1049/ip-vis:20000218 10.1016/j.patcog.2016.09.030 10.1109/TFUZZ.2011.2160025 10.1109/TFUZZ.2015.2460732 10.1109/TFUZZ.2015.2502278 10.1080/01969727408546062 10.1155/2015/485495 10.1109/TFUZZ.2006.876740 10.1109/TSMCB.2004.831165 10.1109/TNN.2002.1000150 10.1080/01969727308546046 10.1007/3-540-61510-5_12 10.1166/asem.2015.1673 10.1108/IJICC-06-2016-0021 10.1109/TFUZZ.2008.2005008 10.1023/B:NEPL.0000011135.19145.1b 10.1016/S0019-9958(65)90241-X 10.1109/TFUZZ.2015.2403878 10.1109/TIP.2016.2621663 10.1109/3477.809032 10.1049/iet-ipr.2011.0128 |
| ContentType | Journal Article |
| Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ JG9 JQ2 L6V L7M L~C L~D M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.3390/sym11060753 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Technology Collection ProQuest One Community College ProQuest Central Aerospace Database SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database Engineered Materials Abstracts ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2073-8994 |
| ExternalDocumentID | 10_3390_sym11060753 |
| GroupedDBID | 5VS 8FE 8FG AADQD AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV BENPR BGLVJ CCPQU CITATION E3Z ESX GX1 HCIFZ IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7SC 7SR 7U5 8BQ 8FD ABUWG AZQEC DWQXO H8D JG9 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c298t-fb6d25f53e6d5b7ff4804cd3fb7dc6145899ec1ab9c2baee8bc9eb3d44ecdfa3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000475703000028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2073-8994 |
| IngestDate | Fri Jul 25 11:59:10 EDT 2025 Sat Nov 29 07:11:30 EST 2025 Tue Nov 18 22:06:53 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c298t-fb6d25f53e6d5b7ff4804cd3fb7dc6145899ec1ab9c2baee8bc9eb3d44ecdfa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7495-4489 |
| OpenAccessLink | https://www.proquest.com/docview/2550273236?pq-origsite=%requestingapplication% |
| PQID | 2550273236 |
| PQPubID | 2032326 |
| ParticipantIDs | proquest_journals_2550273236 crossref_citationtrail_10_3390_sym11060753 crossref_primary_10_3390_sym11060753 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-06-01 |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Symmetry (Basel) |
| PublicationYear | 2019 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Yang (ref_59) 2014; 10 Ahmed (ref_49) 2002; 21 Comaniciu (ref_15) 2002; 24 Hasnat (ref_23) 2016; 38 Saha (ref_25) 2016; 24 Gong (ref_64) 2012; 21 Bampis (ref_24) 2017; 26 Kim (ref_21) 2014; 36 Rasmussen (ref_86) 2006; Volume 10 Liew (ref_51) 2000; 147 ref_54 ref_19 Bezdek (ref_35) 1981; 22 ref_17 Chatzis (ref_18) 2008; 16 Chiang (ref_40) 2015; 23 Sanjith (ref_90) 2015; 10 Hathaway (ref_56) 2000; 8 Saranathan (ref_67) 2016; 54 Dunnt (ref_26) 2008; 4 Crammer (ref_58) 2002; 2 Sghaier (ref_1) 2016; 16 Grau (ref_13) 2004; 23 Javed (ref_12) 2016; 63 Gharieb (ref_4) 2018; 32 Krzysztof (ref_73) 2017; 318 Bezdek (ref_31) 1974; 3 Dunn (ref_47) 1974; 3 ref_20 Guo (ref_69) 2016; 10 Zhao (ref_68) 2014; 8 Bezdek (ref_36) 1982; 10 Gong (ref_14) 2016; 24 Krishnapuram (ref_44) 1996; 4 Cai (ref_55) 2007; 40 Wu (ref_88) 2002; 35 Arbelaez (ref_22) 2017; 39 Masulli (ref_10) 2006; 14 ref_71 Cao (ref_11) 2012; 20 Lei (ref_66) 2018; 26 Bezdek (ref_33) 1979; 10 Cristianini (ref_84) 2001; 32 Jacek (ref_70) 2016; 10 Pham (ref_50) 2001; 84 Dunnt (ref_28) 1974; 4 Zadeh (ref_29) 1965; 8 ref_78 Sanjith (ref_91) 2015; 7 Krishnapuram (ref_43) 1993; 1 ref_77 Gitman (ref_30) 1970; 100 ref_76 ref_75 Krinidis (ref_63) 2010; 19 Chen (ref_53) 2004; 34 Zhao (ref_60) 2013; 23 Yang (ref_61) 2008; 29 Bezdek (ref_32) 1974; 10 Yager (ref_72) 1988; 18 Shabia (ref_8) 2017; 10 Bezdek (ref_34) 1980; 2 ref_82 Cavouras (ref_92) 1999; 51 Bezdek (ref_37) 1984; 10 Girolami (ref_81) 2002; 10 Mahapatra (ref_16) 2017; 5 Baraldi (ref_7) 1999; 29 Muller (ref_74) 2001; 12 Pal (ref_38) 1995; 3 Huang (ref_9) 2012; 20 Wang (ref_62) 2008; 32 ref_45 ref_89 ref_87 Ouma (ref_6) 2017; 83 Nguyen (ref_41) 2016; 24 Chen (ref_80) 2002; 13 ref_85 Zhu (ref_57) 2009; 39 Scholkopf (ref_79) 1998; 10 Zhang (ref_83) 2003; 18 Pal (ref_46) 2005; 13 Chuang (ref_52) 2006; 30 ref_2 Wan (ref_3) 2018; 11 Dunn (ref_27) 1973; 3 Hu (ref_42) 2016; 24 Tolias (ref_48) 1998; 28 ref_5 Gong (ref_39) 2014; 22 Elazab (ref_65) 2015; 5 |
| References_xml | – volume: 21 start-page: 193 year: 2002 ident: ref_49 article-title: A Modified Fuzzy C-means Algorithm for Bias Field Estimation and Segmentation of MRI Data publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.996338 – ident: ref_78 – volume: 23 start-page: 447 year: 2004 ident: ref_13 article-title: Improved Watershed Transform for Medical Image Segmentation Using Prior Information publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2004.824224 – ident: ref_5 – volume: 10 start-page: 490 year: 1979 ident: ref_33 article-title: Convex Decompositions of Fuzzy Partitions publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(79)90039-8 – volume: 51 start-page: 59 year: 1999 ident: ref_92 article-title: Signal-to-noise-ratio (SNR) of X-ray imaging scintillators determined by luminescence measurements publication-title: Appl. Radiat. Isot. doi: 10.1016/S0969-8043(98)00136-5 – ident: ref_71 doi: 10.1002/0471725250.ch8 – volume: 19 start-page: 1328 year: 2010 ident: ref_63 article-title: A Robust Fuzzy Local Information C-means Clustering Algorithm publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2010.2040763 – volume: 12 start-page: 181 year: 2001 ident: ref_74 article-title: An introduction to kernel-based learning algorithms publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.914517 – volume: 11 start-page: 896 year: 2018 ident: ref_3 article-title: A Robust Fuzzy C-means Algorithm Based on Bayesian Nonlocal Spatial information for SAR Image Segmentation publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2018.2792841 – volume: 24 start-page: 1176 year: 2016 ident: ref_14 article-title: Nonparametric Statistical Active Contour Based on Inclusion Degree of Fuzzy Sets publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2015.2505328 – volume: 83 start-page: 196 year: 2017 ident: ref_6 article-title: Pothole Detection on Asphalt Pavements from 2D-Colour Pothole Images Using Fuzzy C-means Clustering and Morphological Reconstruction publication-title: Autom. Constr. doi: 10.1016/j.autcon.2017.08.017 – volume: 13 start-page: 517 year: 2005 ident: ref_46 article-title: A Possibilistic Fuzzy C-means Clustering Algorithm publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2004.840099 – volume: 63 start-page: 431 year: 2016 ident: ref_12 article-title: Dynamic 3D MR Visualization and Detection of upper Airway Obstruction during Sleep Using Region Growing Segmentation publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2462750 – volume: 4 start-page: 385 year: 1996 ident: ref_44 article-title: The possibilistic C-means algorithm: Insights and recommendations publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.531779 – volume: 10 start-page: 1299 year: 1998 ident: ref_79 article-title: Nonlinear Component Analysis as a Kernel Eigenvalue Problem publication-title: Neural Comput. doi: 10.1162/089976698300017467 – ident: ref_2 doi: 10.1007/978-81-322-2529-4_55 – volume: 32 start-page: 685 year: 2008 ident: ref_62 article-title: Modified FCM Algorithm for MRI Brain Image Segmentation Using Both Local and Non-Local Spatial Constraints publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2008.08.004 – volume: 39 start-page: 578 year: 2009 ident: ref_57 article-title: Generalized Fuzzy C-Means Clustering Algorithm With Improved Fuzzy Partitions publication-title: J. Comput. Res. Dev. – volume: 1 start-page: 98 year: 1993 ident: ref_43 article-title: A possibilistic approach to clustering publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.227387 – volume: 21 start-page: 2141 year: 2012 ident: ref_64 article-title: Change Detection in Synthetic Aperture Radar Images Based on Image Fusion and Fuzzy Clustering publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2011.2170702 – volume: 18 start-page: 183 year: 1988 ident: ref_72 article-title: On Ordered Weighted Averaging Aggregation Operators in Multicriteria Decision Making publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/21.87068 – volume: 10 start-page: 114 year: 2016 ident: ref_70 article-title: Fuzzy C-Ordered Means Clustering publication-title: Fuzzy Sets Syst. – volume: 32 start-page: 1 year: 2001 ident: ref_84 article-title: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods publication-title: Kybernetes – volume: 40 start-page: 825 year: 2007 ident: ref_55 article-title: Fast And Robust Fuzzy C-means Clustering Algorithms Incorporating Local Information For Image Segmentation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2006.07.011 – volume: 318 start-page: 1 year: 2017 ident: ref_73 article-title: Fuzzy Weighted C-Ordered Means Clustering Algorithm publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2017.01.001 – volume: 22 start-page: 98 year: 2014 ident: ref_39 article-title: Fuzzy Clustering With a Modified MRF Energy Function for Change Detection in Synthetic Aperture Radar Images publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2013.2249072 – volume: 10 start-page: 57 year: 1974 ident: ref_32 article-title: Numerical Taxonomy with Fuzzy Sets publication-title: J. Math. Biol. doi: 10.1007/BF02339490 – volume: 38 start-page: 2255 year: 2016 ident: ref_23 article-title: Joint Color- Spatial-Directional Clustering and Region Merging (JCSDRM) for Unsupervised RGB-D Image Segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2513407 – volume: 3 start-page: 370 year: 1995 ident: ref_38 article-title: On cluster validity for the fuzzy c-means model publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.413225 – volume: 10 start-page: 191 year: 1984 ident: ref_37 article-title: FCM: The Fuzzy C-means Clustering Algorithm publication-title: Comput. Geosci. doi: 10.1016/0098-3004(84)90020-7 – volume: 8 start-page: 576 year: 2000 ident: ref_56 article-title: Generalized fuzzy c-means clustering strategies using Lp norm distances publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.873580 – ident: ref_87 – volume: 24 start-page: 603 year: 2002 ident: ref_15 article-title: Mean Shift: A Robust Approach toward Feature Space Analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.1000236 – volume: 35 start-page: 2267 year: 2002 ident: ref_88 article-title: Alternative C-means clustering algorithms publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(01)00197-2 – volume: 3 start-page: 58 year: 1974 ident: ref_31 article-title: Cluster Validity with Fuzzy Sets publication-title: J. Cybern. doi: 10.1080/01969727308546047 – volume: 29 start-page: 1713 year: 2008 ident: ref_61 article-title: A Gaussian Kernel-Based Fuzzy C-means Algorithm with a Spatial Bias Correction publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2008.04.016 – volume: 36 start-page: 1761 year: 2014 ident: ref_21 article-title: Image Segmentation Using Higher-Order Correlation Clustering publication-title: IEEE Trans. Pattern Anal. Mach. Intel. doi: 10.1109/TPAMI.2014.2303095 – volume: 84 start-page: 295 year: 2001 ident: ref_50 article-title: Spatial Models for Fuzzy Clustering publication-title: Comput. Vis. Image Underst. doi: 10.1006/cviu.2001.0951 – ident: ref_17 – ident: ref_45 – volume: 54 start-page: 1419 year: 2016 ident: ref_67 article-title: Uniformity-Based Superpixel Segmentation of Hyperspectral Images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2015.2480863 – volume: 39 start-page: 128 year: 2017 ident: ref_22 article-title: Multiscale Combinatorial Grouping for Image Segmentation and Object Proposal Generation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2537320 – volume: 32 start-page: 758 year: 2018 ident: ref_4 article-title: A Hard CMeans Clustering Algorithm Incorporating Membership KL Divergence And Local Data Information for Noisy Image Segmentation publication-title: Int. J. Pattern Recognit. Artif. Intell. doi: 10.1142/S021800141850012X – volume: 23 start-page: 184 year: 2013 ident: ref_60 article-title: Kernel generalized fuzzy C-means clustering with spatial information for image segmentation publication-title: Digit. Signal Process doi: 10.1016/j.dsp.2012.09.016 – volume: 13 start-page: 1364 year: 2002 ident: ref_80 article-title: Fuzzy kernel perceptron publication-title: EEE Trans. Neural Netw. doi: 10.1109/TNN.2002.804311 – ident: ref_20 – volume: 20 start-page: 120 year: 2012 ident: ref_9 article-title: Multiple Kernel Fuzzy Clustering publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2011.2170175 – volume: 28 start-page: 359 year: 1998 ident: ref_48 article-title: Image Segmentation by a Fuzzy Clustering Algorithm Using Adaptive Spatially Constrained Membership Functions publication-title: IEEE Trans. SMC-PART A – volume: 10 start-page: 130 year: 2015 ident: ref_90 article-title: Fusion of DWT-DCT algorithm for satellite image compression publication-title: Int. J. Appl. Eng. Res. – volume: 26 start-page: 3027 year: 2018 ident: ref_66 article-title: Significantly Fast and Robust Fuzzy C-means Clustering Algorithm Based on Morphological Reconstruction and Membership Filtering publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2018.2796074 – volume: 2 start-page: 1 year: 1980 ident: ref_34 article-title: A Convergence Theorem for the Fuzzy C-means Clustering Algorithms publication-title: IEEE Trans. PAMI doi: 10.1109/TPAMI.1980.4766964 – ident: ref_76 – volume: 30 start-page: 9 year: 2006 ident: ref_52 article-title: Fuzzy c-means clustering with spatial information for image segmentation publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2005.10.001 – volume: 10 start-page: 272 year: 2016 ident: ref_69 article-title: Adaptive Fuzzy C-means Algorithm Based on Local Noise Detecting for Image Segmentation publication-title: IET Image Process. doi: 10.1049/iet-ipr.2015.0236 – volume: 24 start-page: 1294 year: 2016 ident: ref_41 article-title: Online feature selection based on fuzzy clustering and its applications publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2015.2513091 – volume: 16 start-page: 3449 year: 2016 ident: ref_1 article-title: A K-Means Clustering-Based Security Framework for Mobile Data Mining publication-title: Wirel. Commun. Mob. Comput. doi: 10.1002/wcm.2762 – ident: ref_19 doi: 10.1109/ICCV.2015.209 – ident: ref_82 – volume: 147 start-page: 185 year: 2000 ident: ref_51 article-title: Fuzzy Image Clustering Incorporating Spatial Continuity publication-title: IEEE Proc. Vis. Image Signal Process. doi: 10.1049/ip-vis:20000218 – volume: 5 start-page: 700 year: 2017 ident: ref_16 article-title: Semi-Supervised Learning and Graph Cuts for Consensus Based Medical Image Segmentation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.09.030 – volume: 100 start-page: 583 year: 1970 ident: ref_30 article-title: An Algorithm for Detecting Unimodal Fuzzy Sets and Its Application as a Clustering Technique publication-title: IEEE Comput. Soc. – volume: 20 start-page: 1 year: 2012 ident: ref_11 article-title: Segmentation of M-FISH Images for Improved Classification of Chromosomes with an Adaptive Fuzzy C-means Clustering Algorithm publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2011.2160025 – volume: 24 start-page: 456 year: 2016 ident: ref_42 article-title: Fuzzy clustering in a complex network based on content relevance and link structures publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2015.2460732 – volume: 24 start-page: 1121 year: 2016 ident: ref_25 article-title: Multiscale Opening of Conjoined Fuzzy Objects: Theory and Applications publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2015.2502278 – volume: 10 start-page: 105 year: 2014 ident: ref_59 article-title: A Kernel Fuzzy c-Means Clustering-Based Fuzzy Support Vector Machine Algorithm for Classification Problems With Outliers or Noises publication-title: IEEE Trans. Fuzzy Syst. – volume: 4 start-page: 1 year: 1974 ident: ref_28 article-title: Some Recent Investigations of a New Fuzzy Partitioning Algorithm and Its Application to Pattern Classification Problems publication-title: J. Cybern. doi: 10.1080/01969727408546062 – volume: 5 start-page: 1 year: 2015 ident: ref_65 article-title: Segmentation of Brain Tissues from Magnetic Resonance Images Using Adaptively Regularized Kernel-Based Fuzzy C-Means Clustering publication-title: Comput. Math. Methods Med. doi: 10.1155/2015/485495 – volume: 14 start-page: 516 year: 2006 ident: ref_10 article-title: Soft Transition from Probabilistic to Possibilistic Fuzzy Clustering publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2006.876740 – volume: 34 start-page: 1907 year: 2004 ident: ref_53 article-title: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure publication-title: IEEE Trans. Syst. Man Cybern. Part B doi: 10.1109/TSMCB.2004.831165 – volume: 10 start-page: 142 year: 1982 ident: ref_36 article-title: Fuzzy Clustering: A New Approach for Geostatistical Analysis publication-title: Syst. Meas. Decis. – volume: 10 start-page: 780 year: 2002 ident: ref_81 article-title: Mercer kernel-based clustering in feature space publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2002.1000150 – volume: 3 start-page: 32 year: 1973 ident: ref_27 article-title: A fuzzy relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters publication-title: J. Cybern. doi: 10.1080/01969727308546046 – ident: ref_77 doi: 10.1007/3-540-61510-5_12 – ident: ref_75 – volume: 7 start-page: 227 year: 2015 ident: ref_91 article-title: Experimental Analysis of Compacted Satellite Image Quality Using Different Compression Methods publication-title: Adv. Sci. Eng. Med. doi: 10.1166/asem.2015.1673 – volume: 3 start-page: 32 year: 1974 ident: ref_47 article-title: A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters Department of Theoretical and Applied Mechanics publication-title: J. Cybern. doi: 10.1080/01969727308546046 – ident: ref_54 – volume: 10 start-page: 166 year: 2017 ident: ref_8 article-title: Structure Identification and IO Space Partitioning In a Nonlinear Fuzzy System for Prediction of Patient Survival after Surgery publication-title: Int. J. Intell. Comput. Cybern. doi: 10.1108/IJICC-06-2016-0021 – volume: 16 start-page: 1351 year: 2008 ident: ref_18 article-title: A Fuzzy Clustering Approach Toward Hidden Markov Random Field Models for Enhanced Spatially Constrained Image Segmentation publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2008.2005008 – volume: 18 start-page: 155 year: 2003 ident: ref_83 article-title: Clustering Incomplete Data Using Kernel-Based Fuzzy C-means Algorithm publication-title: Neural Process. Lett. doi: 10.1023/B:NEPL.0000011135.19145.1b – ident: ref_85 – volume: 4 start-page: 95 year: 2008 ident: ref_26 article-title: Well-Separated Clusters and Optimal Fuzzy Partitions publication-title: J. Cybern. – volume: 2 start-page: 265 year: 2002 ident: ref_58 article-title: On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines publication-title: J. Mach. Learn. Res. – volume: 8 start-page: 338 year: 1965 ident: ref_29 article-title: Fuzzy sets publication-title: Inf. Control doi: 10.1016/S0019-9958(65)90241-X – volume: 22 start-page: 203 year: 1981 ident: ref_35 article-title: Pattern Recognition with Fuzzy Objective Function Algorithms publication-title: Adv. Appl. Pattern Recognit. – volume: 23 start-page: 2122 year: 2015 ident: ref_40 article-title: Discovering Latent Semantics in Web Documents using Fuzzy Clustering publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2015.2403878 – volume: Volume 10 start-page: 67 year: 2006 ident: ref_86 article-title: Gaussian processes in machine learning publication-title: Summer School on Machine Learning – ident: ref_89 – volume: 26 start-page: 35 year: 2017 ident: ref_24 article-title: Graph-Driven Diffusion and Random Walk Schemes for Image Segmentation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2621663 – volume: 29 start-page: 778 year: 1999 ident: ref_7 article-title: A survey of fuzzy clustering algorithms for pattern recognition I publication-title: IEEE Syst. Man Cybern. Soc. doi: 10.1109/3477.809032 – volume: 8 start-page: 150 year: 2014 ident: ref_68 article-title: Neighbourhood Weighted Fuzzy C-means Clustering Algorithm for Image Segmentation publication-title: IET Image Process. doi: 10.1049/iet-ipr.2011.0128 |
| SSID | ssj0000505460 |
| Score | 2.216278 |
| Snippet | The spatial constrained Fuzzy C-means clustering (FCM) is an effective algorithm for image segmentation. Its background information improves the insensitivity... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 753 |
| SubjectTerms | Algorithms Artificial intelligence Background noise Bias Clustering Computation Distance measurement Euclidean geometry Fuzzy sets Image segmentation Kernels Neighborhoods Noise Outliers (statistics) Robustness (mathematics) |
| Title | Kernel-Based Robust Bias-Correction Fuzzy Weighted C-Ordered-Means Clustering Algorithm |
| URI | https://www.proquest.com/docview/2550273236 |
| Volume | 11 |
| WOSCitedRecordID | wos000475703000028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELZa4NALkAIiPCIfOLSVLLJr79p7QiRKVNQmjSjicVr5CUghgewGCQ797R1vnBQkxKWXPezOwdoZzzczHs-H0IGgRgrnYuKE9KUbMGPZZBExlGmdyIRn1en5-U_e74vLy2wQCm5FaKuc-8TKUZux9jXyQwh9_eiVmKZH9w_Es0b509VAofERLfspCVHVuvd7UWPxLG0sbc6u5VHI7g-LpzvAuxRwkr4Gotd-uAKX7tr_LmsdrYawEh_P7KCGPtjRZ1QLG7fAX8J06a8b6OKHnYzskLQAvgw-HatpUeLWrSxI2xN1VNcccHf6_PyEL6qyKUi1ya9JRepJehagDbeHUz9fAVAPHw-vYTnlzd0mOut2ztrfSWBXIDrOREmcSk2cuITa1CSKO8dEk2lDneJGA2gnkIlZHUmV6VhJa4XSGWTehjGrjZN0Cy2NxiO7jTAEMTZrykxwqRjlTsU80pHh1lgmdMrr6Nv8T-c6TB73BBjDHDIQr5b8hVrq6GAhfD8buPG22N5cH3nYdUX-Txk773_eRZ8g8MlmLV97aKmcTO0-WtGP5W0xaaDlVqc_OG1UxuSffzrwbnDSG1z9BYUL19g |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fTxQxEG4QTPRFRCWiqH3ARE0a9trutn0gBg4vkDtOoxfhbdOfQHLc4e2e5vif_B-d7g-UxPjGg8872aSdL_PNTNv5ENqSzGkZAiVB6ti6ARjrhHeIY9zaVKdCVafnXwdiOJQnJ-rTEvrZvoWJ1yrbmFgFaje1sUe-DalvHL1CWfb-8huJqlHxdLWV0Khh0feLH1CyFTuH--Df15T2Poy6B6RRFSCWKlmSYDJH05Ayn7nUiBC4TLh1LBjhLJBVChWItx1tlKVGey-NVVBxOs69dUEz-O0dtAJZBFXVTcEv1y2dKArHs6R-BciYSraLxQXQawa0zG7y3s2wX3FZb_U_24WH6EGTNOPdGuVraMlPHqG1JiwV-E0zO_vtY3Tc97OJH5M9IGeHP0_NvCjx3rkuSDfKkFSPOHBvfnW1wMdVUxisuuTjrJIsJUceiBt3x_M4PQI4He-OT2H15dnFEzS6jfWto-XJdOKfIgwpmleJVlJow5kIhoqO7TjhnefSZmIDvWsdm9tmrnqU9xjnUF9FFOR_oGADbV0bX9bjRP5uttm6P29iSpH_9v2zf39-he4djI4G-eBw2H-O7kOKp-rLbZtouZzN_Qt0134vz4vZywq_GOW3jJRfzJE1UA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFCEuQHmIQgEfigRIVjZr73p9QKhNiYjShghVtD2t_IRKaVKyG1D6z_h3jPdRqIS49cB5RyvZ_jTfzHg8H8B2xqzKvI-pz1Qo3SCMVcR71DJuTKISIavb88_7YjzOjo_lZA1-tm9hQltl6xMrR23nJtTIuxj6htErMUu7vmmLmOwN3p1_o0FBKty0tnIaNURGbvUD07fi7XAPz_plHA_eH_Y_0EZhgJpYZiX1OrVx4hPmUpto4T3PIm4s81pYg8SVYDbiTE9paWKtnMu0kZh9Ws6dsV4x_O0NWMeInMcdWJ8MDyYnlwWeIBHH06h-E8iYjLrF6gzJNkWSZldZ8CoJVMw2uPsf78k9uNOE02Snxv8GrLnZfdhoHFZBXjVTtV8_gKORW8zclO4ibVvyaa6XRUl2T1VB-0GgpHreQQbLi4sVOarKxWjVpx8XlZgpPXBI6aQ_XYa5Esj2ZGf6BVdffj17CIfXsb5H0JnNZ-4xEAzenIyUzITSnAmvY9EzPSucdTwzqdiEN-0h56aZuB6EP6Y5Zl4BEfkfiNiE7Uvj83rQyN_Ntloo5I23KfLfOHjy788v4BYCJN8fjkdP4TbGfrLuetuCTrlYumdw03wvT4vF8wbMBPJrhsovh-I_hg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kernel-Based+Robust+Bias-Correction+Fuzzy+Weighted+C-Ordered-Means+Clustering+Algorithm&rft.jtitle=Symmetry+%28Basel%29&rft.au=Zhang%2C+Wenyuan&rft.au=Guo%2C+Xijuan&rft.au=Huang%2C+Tianyu&rft.au=Liu%2C+Jiale&rft.date=2019-06-01&rft.pub=MDPI+AG&rft.eissn=2073-8994&rft.volume=11&rft.issue=6&rft.spage=753&rft_id=info:doi/10.3390%2Fsym11060753&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon |