OPTIMIZING A LINEAR FRACTIONAL PROGRAMMING PROBLEM WITH MAX-PRODUCT FUZZY RELATIONAL EQUATION CONSTRAINTS

This study investigates a new framework that a linear fractional programming problem is subject to fuzzy relational equations with max-product composition. Three folds are presented. First, some theoretical results are developed to optimize such a linear fractional programming problem based on the p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the Chinese Institute of Industrial Engineers Ročník 25; číslo 4; s. 314 - 325
Hlavní autor: Wu, Yan-Kuen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Taylor & Francis Group 01.01.2008
Témata:
ISSN:1017-0669, 2151-7606
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This study investigates a new framework that a linear fractional programming problem is subject to fuzzy relational equations with max-product composition. Three folds are presented. First, some theoretical results are developed to optimize such a linear fractional programming problem based on the properties of max-product composition. Second, the results are adopted to reduce the feasible domain. The problem can thus be simplified and converted into a traditional linear fractional programming problem. Third, a procedure is presented to solve this optimization problem without looking for all potential minimal solutions. Numerical examples are provided to illustrate the procedure.
ISSN:1017-0669
2151-7606
DOI:10.1080/10170660809509095