An Asymmetric Distribution with Heavy Tails and Its Expectation–Maximization (EM) Algorithm Implementation

In this paper we introduce a new distribution constructed on the basis of the quotient of two independent random variables whose distributions are the half-normal distribution and a power of the exponential distribution with parameter 2 respectively. The result is a distribution with greater kurtosi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) Jg. 11; H. 9; S. 1150
Hauptverfasser: Olmos, Neveka M., Venegas, Osvaldo, Gómez, Yolanda M., Iriarte, Yuri A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.09.2019
Schlagworte:
ISSN:2073-8994, 2073-8994
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper we introduce a new distribution constructed on the basis of the quotient of two independent random variables whose distributions are the half-normal distribution and a power of the exponential distribution with parameter 2 respectively. The result is a distribution with greater kurtosis than the well known half-normal and slashed half-normal distributions. We studied the general density function of this distribution, with some of its properties, moments, and its coefficients of asymmetry and kurtosis. We developed the expectation–maximization algorithm and present a simulation study. We calculated the moment and maximum likelihood estimators and present three illustrations in real data sets to show the flexibility of the new model.
AbstractList In this paper we introduce a new distribution constructed on the basis of the quotient of two independent random variables whose distributions are the half-normal distribution and a power of the exponential distribution with parameter 2 respectively. The result is a distribution with greater kurtosis than the well known half-normal and slashed half-normal distributions. We studied the general density function of this distribution, with some of its properties, moments, and its coefficients of asymmetry and kurtosis. We developed the expectation–maximization algorithm and present a simulation study. We calculated the moment and maximum likelihood estimators and present three illustrations in real data sets to show the flexibility of the new model.
Author Gómez, Yolanda M.
Olmos, Neveka M.
Venegas, Osvaldo
Iriarte, Yuri A.
Author_xml – sequence: 1
  givenname: Neveka M.
  surname: Olmos
  fullname: Olmos, Neveka M.
– sequence: 2
  givenname: Osvaldo
  orcidid: 0000-0001-6643-6972
  surname: Venegas
  fullname: Venegas, Osvaldo
– sequence: 3
  givenname: Yolanda M.
  surname: Gómez
  fullname: Gómez, Yolanda M.
– sequence: 4
  givenname: Yuri A.
  surname: Iriarte
  fullname: Iriarte, Yuri A.
BookMark eNptkMFOAjEQhhuDiYicfIEmXjRmtd1ud9vjBlFIIF7wvCmlaMlud20LgiffwTf0SSyuB2KcOcxM8v0zmf8UdExtFADnGN0QwtGt21UYI44xRUegG6OMRIzzpHPQn4C-cysUgiKapKgLytzAPCgr5a2W8E67UOdrr2sD37R_gSMlNjs4E7p0UJgFHHsHh9tGSS_20NfH51RsdaXff0Z4OZxewbx8rm0QV3BcNaWqlGnhM3C8FKVT_d_aA0_3w9lgFE0eH8aDfBLJmDMfzWOSEMEpx4ilihCRZmKRJZJLxuYUL0i8xJlgCUmFIFJKwVkiGU9RYLFikvTARbu3sfXrWjlfrOq1NeFkEVOK4ixkHKjrlpK2ds6qZdFYXQm7KzAq9o4WB44GGv-hpW6_8jaY86_mG0yVfGs
CitedBy_id crossref_primary_10_1080_02664763_2025_2451977
crossref_primary_10_3390_math8071116
crossref_primary_10_3390_sym13071226
Cites_doi 10.1007/s11766-016-3366-3
10.1016/S0167-9473(02)00303-1
10.2991/jsta.2015.14.4.4
10.1007/b98855
10.1214/aos/1176344136
10.1080/02331888.2012.694441
10.1109/TAC.1974.1100705
10.1111/j.2517-6161.1977.tb01600.x
10.6339/JDS.201204_10(2).0003
10.1080/03610920701826088
10.1111/j.1467-9574.1972.tb00191.x
10.1007/s00362-011-0391-4
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
JG9
JQ2
L6V
L7M
L~C
L~D
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.3390/sym11091150
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Aerospace Database
SciTech Premium
Materials Research Database
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
Engineered Materials Abstracts
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2073-8994
ExternalDocumentID 10_3390_sym11091150
GroupedDBID 5VS
8FE
8FG
AADQD
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
E3Z
ESX
GX1
HCIFZ
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7SC
7SR
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
H8D
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c298t-b2343a9591086e33a67ad74c9c88b51d32f17a8436aa3ccca984c8960e331e8c3
IEDL.DBID M7S
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000489177900086&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2073-8994
IngestDate Fri Jul 25 11:57:56 EDT 2025
Sat Nov 29 07:10:51 EST 2025
Tue Nov 18 21:39:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c298t-b2343a9591086e33a67ad74c9c88b51d32f17a8436aa3ccca984c8960e331e8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6643-6972
OpenAccessLink https://www.proquest.com/docview/2550272722?pq-origsite=%requestingapplication%
PQID 2550272722
PQPubID 2032326
ParticipantIDs proquest_journals_2550272722
crossref_primary_10_3390_sym11091150
crossref_citationtrail_10_3390_sym11091150
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Symmetry (Basel)
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Bolfarine (ref_3) 2015; 14
Rogers (ref_6) 1972; 26
Olmos (ref_5) 2012; 53
ref_13
Akaike (ref_14) 1974; 19
Cooray (ref_1) 2008; 37
Cordeiro (ref_2) 2012; 10
Schwarz (ref_15) 1978; 6
Vidal (ref_4) 2016; 31
ref_18
ref_17
ref_16
ref_9
Dempster (ref_10) 1977; 39
Lin (ref_12) 2007; 17
Lee (ref_11) 2004; 45
ref_7
Reyes (ref_8) 2013; 47
References_xml – ident: ref_7
– volume: 31
  start-page: 409
  year: 2016
  ident: ref_4
  article-title: A generalization of the half-normal distribution
  publication-title: Appl. Math. J. Chin. Univ.
  doi: 10.1007/s11766-016-3366-3
– volume: 45
  start-page: 321
  year: 2004
  ident: ref_11
  article-title: Influence analyses of nonlinear mixed-effects models
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/S0167-9473(02)00303-1
– volume: 14
  start-page: 383
  year: 2015
  ident: ref_3
  article-title: Likelihood-based inference for power half-normal distribution
  publication-title: J. Stat. Theory Appl.
  doi: 10.2991/jsta.2015.14.4.4
– ident: ref_9
  doi: 10.1007/b98855
– volume: 6
  start-page: 461
  year: 1978
  ident: ref_15
  article-title: Estimating the dimension of a model
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176344136
– volume: 47
  start-page: 929
  year: 2013
  ident: ref_8
  article-title: Modified slash distribution
  publication-title: Statistics
  doi: 10.1080/02331888.2012.694441
– volume: 19
  start-page: 716
  year: 1974
  ident: ref_14
  article-title: A new look at the statistical model identification
  publication-title: IEEE Trans. Auto. Contr.
  doi: 10.1109/TAC.1974.1100705
– ident: ref_16
– volume: 39
  start-page: 1
  year: 1977
  ident: ref_10
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Statist. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 10
  start-page: 195
  year: 2012
  ident: ref_2
  article-title: The Kumaraswamy Generalized Half-Normal Distribution for Skewed Positive Data
  publication-title: J. Data Sci.
  doi: 10.6339/JDS.201204_10(2).0003
– ident: ref_13
– volume: 37
  start-page: 1323
  year: 2008
  ident: ref_1
  article-title: A Generalization of the Half-Normal Distribution with Applications to Lifetime Data
  publication-title: Commun. Stat. Theory Methods
  doi: 10.1080/03610920701826088
– ident: ref_17
– ident: ref_18
– volume: 17
  start-page: 909
  year: 2007
  ident: ref_12
  article-title: Finite mixture modeling using the skew-normal distribution
  publication-title: Stat. Sin.
– volume: 26
  start-page: 211
  year: 1972
  ident: ref_6
  article-title: Understanding some long-tailed symmetrical distributions
  publication-title: Stat. Neerl.
  doi: 10.1111/j.1467-9574.1972.tb00191.x
– volume: 53
  start-page: 875
  year: 2012
  ident: ref_5
  article-title: An extension of the half-normal distribution
  publication-title: Stat. Pap.
  doi: 10.1007/s00362-011-0391-4
SSID ssj0000505460
Score 2.143164
Snippet In this paper we introduce a new distribution constructed on the basis of the quotient of two independent random variables whose distributions are the...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1150
SubjectTerms Algorithms
Asymmetry
Electric power distribution
Independent variables
Kurtosis
Maximization
Maximum likelihood estimators
Normal distribution
Optimization
Probability distribution functions
Quotients
Random variables
Skewed distributions
Title An Asymmetric Distribution with Heavy Tails and Its Expectation–Maximization (EM) Algorithm Implementation
URI https://www.proquest.com/docview/2550272722
Volume 11
WOSCitedRecordID wos000489177900086&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZ4DSy8EeUlDwwFKaKJ3daeUIFWZWhV8ZBgihw7gUpNWppQwYL4D_xDfgl3qVtAQizIUobkBivnO9-dfd9HyEGpLBQMD0xc5wkKd5QIQqcilTYmKOEmnpNNVNttcXsrO7bgltprlROfmDtq09dYIz-G0BcyKBjeyeDRQdYoPF21FBqzZB5REtz86t7VtMaCLG28Uhq35THI7o_TlxghNjEM-rkR_fTD-ebSWP7vtFbIkg0raW28DlbJTJiskVVruCktWnTpw3XSqyW0BhOMkUpL03MEzrWcVxSLsrQZqtELvVbdXkpVYuhFllIERNbjQ_uPt_eWeu7Gtn-TFuutQ1rr3cOksoeY5mjDsW1oSjbITaN-fdZ0LOWCoz0pMifwGGdKliUSMIWMqUpVmSrXUgsRlF3DvMitKsFZRSmmQftScC0gCwJZNxSabZK5pJ-EW4S6BhStIs5K3HCNqPVBJGExQAYjTTmMCuRo8v99bfHIkRaj50NegsryvymrQA6mwoMxDMfvYrsTLfnWFlP_S0Xbf3_eIYsQDtkbZLtkLhs-hXtkQY-ybjrcJ_On9Xbncj9fYvh8rcO7zkWrc_cJIpHeLQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwFD7aCtK4YQyYGGzgiyG1SFHT2G3tC4QqtqrV1gqJIvUuOLYLlZqsNKGsd3sH3mMPxZPsOHG2VULc9QL5MlYk21_Oj3PO9wEc-00ucQT4ias8QWGe5JHxWkIqrSPfOvFcbKI9HPLxWHzaguuyF8aWVZY2MTfU-kLZO_I6hr6YQeEIPsx_eFY1yv5dLSU0ClicmdUvTNnS9_0TPN-3QdA9HX3seU5VwFOB4JkXBZRRKZrCagwZSmWrLXWbKaE4j5oNTYNJoy05oy0pqcIFCs4Ux0Af5zYMVxTfuw0PMIwIRF4q-Pn2TseqwrGWX7QBUir8erqKLaWnDbvWHd-63c-dWXf3f9uGJ_DYhc2kU-B8D7ZM8hT2nGFKSdWxZ9eewayTkA5uSGylwhQ5scTATtOL2Etn0jNyuSIjOZ2lRCaa9LOUWMJnVRQl_Ln6PZCX09j1p5Lq6aBGOrNvuAnZ95jkbMqxa9hKnsOXjax6HyrJRWJeAGloBLKcMOozzZRl5Y8mAsGOGZrQTTM5gHfleYfK8a1b2Y9ZiHmXBUd4DxwHcHw7eV7QjPx92mGJitDZmjS8g8TLfz9-Azu90eA8PO8Pz17BIwz9XLXcIVSyxU9zBA_VMpumi9c5rAl83TSAbgDXzDVs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dTtswFD6CMiFu2BhMwNjwBZNgUtQ0dlv7YkLVSkXFWvUCJHYVHNsZlZrwkwDrHe_A2_A4PAnHicOGhHbHxZTLWJFsfz4_zjnfB7DlN7nEJ8AjrooEhXmSR8ZrCam0jnzrxAuxifZwyI-PxWgG7qteGFtWWdnEwlDrM2XvyOsY-mIGhU9Qj11ZxKjb2z2_8KyClP3TWslplBA5MNMbTN-yb_0u7vWXIOjtHX7f95zCgKcCwXMvCiijUjSF1RsylMpWW-o2U0JxHjUbmgZxoy05oy0pqcLJCs4Ux6AfxzYMVxS_OwtzGJKzoAZzo_5g9PPphsdqxLGWXzYFUir8ejZNLMGnDcKeu8HnXqBwbb23__OivINFF1CTTnkClmDGpO9hyZmsjGw7Xu2dZZh0UtLBxUmsiJgiXUsZ7NS-iL2OJvtGXk_JoRxPMiJTTfp5RiwVtCrLFR5u7wby9zhxnatke2-wQzqTX7gI-WlCCp7lxLVypStw9Cqz_gC19Cw1q0AaGiEuY0Z9ppmyfP1RLPAYYO4mdNPEa_C12vtQOSZ2KwgyCTEjs0AJ_wLKGmw9DT4vCUheHrZRISR0VigL_8Bj_d-vN2EecRP-6A8PPsICxoSujG4DavnllfkEb9R1Ps4uPzuMEzh5bQQ9AmQhP6I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Asymmetric+Distribution+with+Heavy+Tails+and+Its+Expectation%E2%80%93Maximization+%28EM%29+Algorithm+Implementation&rft.jtitle=Symmetry+%28Basel%29&rft.au=Olmos%2C+Neveka+M&rft.au=Venegas%2C+Osvaldo&rft.au=G%C3%B3mez%2C+Yolanda+M&rft.au=Iriarte%2C+Yuri+A&rft.date=2019-09-01&rft.pub=MDPI+AG&rft.eissn=2073-8994&rft.volume=11&rft.issue=9&rft.spage=1150&rft_id=info:doi/10.3390%2Fsym11091150&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon