Enhanced Double Inertial Forward–Backward Splitting Algorithm for Variational Inclusion Problems: Applications in Mathematical Integrated Skill Prediction

This paper introduces a new algorithm that combines the forward–backward splitting algorithms with a double inertial technique, utilizing the previous three iterations. The weak convergence theorem is established under certain mild conditions in a Hilbert space, including a relaxed inertial method i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) Jg. 16; H. 8; S. 1091
Hauptverfasser: Jun-On, Nipa, Cholamjiak, Watcharaporn
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.08.2024
Schlagworte:
ISSN:2073-8994, 2073-8994
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces a new algorithm that combines the forward–backward splitting algorithms with a double inertial technique, utilizing the previous three iterations. The weak convergence theorem is established under certain mild conditions in a Hilbert space, including a relaxed inertial method in real numbers. An example of infinite dimension space is given with numerical results to support our proposed algorithm. The algorithm is applied to an asymmetrical educational dataset of students from 109 schools, utilizing asymmetric inputs as nine attributes to predict the output as students’ mathematical integrated skills. The algorithm’s performance is compared with other algorithms in the literature to demonstrate its effectiveness. The proposed algorithm demonstrates comparable precision, recall, accuracy, and F1 score but performs a relatively lower number of iterations. The contributions of each performance aspect to the mathematical integration skill of students are discussed to improve students’ mathematical learning.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2073-8994
2073-8994
DOI:10.3390/sym16081091