Convergence Analysis of an Inexact Three-Operator Splitting Algorithm

The three-operator splitting algorithm is a new splitting algorithm for finding monotone inclusion problems of the sum of three maximally monotone operators, where one is cocoercive. As the resolvent operator is not available in a closed form in the original three-operator splitting algorithm, in th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Symmetry (Basel) Ročník 10; číslo 11; s. 563
Hlavní autoři: Zong, Chunxiang, Tang, Yuchao, Cho, Yeol Je
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.11.2018
Témata:
ISSN:2073-8994, 2073-8994
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The three-operator splitting algorithm is a new splitting algorithm for finding monotone inclusion problems of the sum of three maximally monotone operators, where one is cocoercive. As the resolvent operator is not available in a closed form in the original three-operator splitting algorithm, in this paper, we introduce an inexact three-operator splitting algorithm to solve this type of monotone inclusion problem. The theoretical convergence properties of the proposed iterative algorithm are studied in general Hilbert spaces under mild conditions on the iterative parameters. As a corollary, we obtain general convergence results of the inexact forward-backward splitting algorithm and the inexact Douglas-Rachford splitting algorithm, which extend the existing results in the literature.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2073-8994
2073-8994
DOI:10.3390/sym10110563