Convergence Analysis of an Inexact Three-Operator Splitting Algorithm

The three-operator splitting algorithm is a new splitting algorithm for finding monotone inclusion problems of the sum of three maximally monotone operators, where one is cocoercive. As the resolvent operator is not available in a closed form in the original three-operator splitting algorithm, in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) Jg. 10; H. 11; S. 563
Hauptverfasser: Zong, Chunxiang, Tang, Yuchao, Cho, Yeol Je
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.11.2018
Schlagworte:
ISSN:2073-8994, 2073-8994
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The three-operator splitting algorithm is a new splitting algorithm for finding monotone inclusion problems of the sum of three maximally monotone operators, where one is cocoercive. As the resolvent operator is not available in a closed form in the original three-operator splitting algorithm, in this paper, we introduce an inexact three-operator splitting algorithm to solve this type of monotone inclusion problem. The theoretical convergence properties of the proposed iterative algorithm are studied in general Hilbert spaces under mild conditions on the iterative parameters. As a corollary, we obtain general convergence results of the inexact forward-backward splitting algorithm and the inexact Douglas-Rachford splitting algorithm, which extend the existing results in the literature.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2073-8994
2073-8994
DOI:10.3390/sym10110563