Transformative Opportunities from Data Science and Big Data Analytics: Applied to Photovoltaics
Distributed computing, data science, and machine learning are producing transformative changes across diverse research areas. Our research focuses on increasing the lifetime performance of photovoltaic (PV) module, and is essential to increasing PV energy generation on the electrical grid. Tradition...
Uloženo v:
| Vydáno v: | The Electrochemical Society interface Ročník 28; číslo 1; s. 57 - 61 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
The Electrochemical Society
01.03.2019
|
| ISSN: | 1064-8208, 1944-8783 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Distributed computing, data science, and machine learning are producing transformative changes across diverse research areas. Our research focuses on increasing the lifetime performance of photovoltaic (PV) module, and is essential to increasing PV energy generation on the electrical grid. Traditional analysis of PV modules is insufficient to determine accurate lifetimes of modules with different architectures deployed in diverse climatic zones. To solve this complex problem, a data science approach is needed to handle the large scale data on materials, modules, commercial power plants, and the grid. This approach involves data ingestion with a non-relational data warehouse and data driven modeling based on the underlying physics and chemistry. It is critical to assemble data, develop and share codes and tools, and report research results to the whole PV value chain, as opposed to just the PV research community. |
|---|---|
| AbstractList | Distributed computing, data science, and machine learning are producing transformative changes across diverse research areas. Our research focuses on increasing the lifetime performance of photovoltaic (PV) module, and is essential to increasing PV energy generation on the electrical grid. Traditional analysis of PV modules is insufficient to determine accurate lifetimes of modules with different architectures deployed in diverse climatic zones. To solve this complex problem, a data science approach is needed to handle the large scale data on materials, modules, commercial power plants, and the grid. This approach involves data ingestion with a non-relational data warehouse and data driven modeling based on the underlying physics and chemistry. It is critical to assemble data, develop and share codes and tools, and report research results to the whole PV value chain, as opposed to just the PV research community. |
| Author | Bruckman, Laura S. |
| Author_xml | – sequence: 1 givenname: Laura S. orcidid: 0000-0003-1271-1072 surname: Bruckman fullname: Bruckman, Laura S. organization: Case Western Reserve University Materials Science and Engineering, , USA |
| BookMark | eNptkEFLAzEQhYNUsK1e_AU5eRC2JtndbuKtVqtCoYL1HGaziaZskyVJC_33rlQv0tM8Zr438N4IDZx3GqFrSiaUFuKOTRakooJac4aGVBRFxiueD3pNpr1mhF-gUYwbQmhBBBsiuQ7govFhC8nuNV51nQ9p52yyOmIT_BY_QgL8rqx2SmNwDX6wn8flzEF7SFbFezzrutbqBieP37588nvfJugvl-jcQBv11e8co4_F03r-ki1Xz6_z2TJTTPCUMQOUV4SJpgRTF7xuck25aeo851RzUZc5KCgJ56bWVTM1jJakqrUWtCLTmuVjdHv8q4KPMWgju2C3EA6SEvlTjWTyr5oeJv9gZVOf37sUwLanLTdHi_Wd3Phd6KPHU-A3hYx2Ig |
| CitedBy_id | crossref_primary_10_3390_cryst12030385 |
| ContentType | Journal Article |
| Copyright | Copyright 2019 by The Electrochemical Society. |
| Copyright_xml | – notice: Copyright 2019 by The Electrochemical Society. |
| DBID | AAYXX CITATION |
| DOI | 10.1149/2.F07191if |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1944-8783 |
| EndPage | 61 |
| ExternalDocumentID | 10_1149_2_F07191if F07191IF |
| GroupedDBID | -~X 2WC 5VS 8WZ 9M8 A6W AAGCD AATNI ABEFU ABJNI ABTAH ACBEA ACHIP AFFNX AI. ALMA_UNASSIGNED_HOLDINGS C1A CJUJL E3Z EBS EJD FRP H13 HH5 H~9 IOP JGOPE KOT MS~ MVM N5L OK1 REC RHF RHI RNS TN5 TWZ UPT VH1 WH7 ZY4 AAYXX ADEQX CITATION O3W |
| ID | FETCH-LOGICAL-c298t-2fa187029d5afb48bd3e18fdb3381e89b53aca5088fbe7d6f21507bee91706b23 |
| IEDL.DBID | O3W |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000463161600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1064-8208 |
| IngestDate | Sat Nov 29 03:19:57 EST 2025 Tue Nov 18 20:57:45 EST 2025 Wed Aug 21 03:33:30 EDT 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c298t-2fa187029d5afb48bd3e18fdb3381e89b53aca5088fbe7d6f21507bee91706b23 |
| Notes | F07191IF |
| ORCID | 0000-0003-1271-1072 |
| OpenAccessLink | https://doi.org/10.1149/2.f07191if |
| PageCount | 5 |
| ParticipantIDs | crossref_primary_10_1149_2_F07191if crossref_citationtrail_10_1149_2_F07191if iop_journals_10_1149_2_F07191if |
| PublicationCentury | 2000 |
| PublicationDate | 2019-03-01 |
| PublicationDateYYYYMMDD | 2019-03-01 |
| PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | The Electrochemical Society interface |
| PublicationYear | 2019 |
| Publisher | The Electrochemical Society |
| Publisher_xml | – name: The Electrochemical Society |
| SSID | ssj0014092 |
| Score | 1.7659096 |
| Snippet | Distributed computing, data science, and machine learning are producing transformative changes across diverse research areas. Our research focuses on... |
| SourceID | crossref iop |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 57 |
| Title | Transformative Opportunities from Data Science and Big Data Analytics: Applied to Photovoltaics |
| URI | https://iopscience.iop.org/article/10.1149/2.F07191if |
| Volume | 28 |
| WOSCitedRecordID | wos000463161600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 1944-8783 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014092 issn: 1064-8208 databaseCode: O3W dateStart: 19920301 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFH4BNFEP_kCN-LOJXjwUt27rWm-KEg8GOKByW9qtVRKzERj8_XasEExITLwt3Wu2vPW972u69z2Am0R5VBpgxowHDva5H2BGdYKZil3pU6L5vPPc-2vY6bDBgPcqECxrYbKRTf1Nc1kKBZcutMK2_I402wYXuTvUVdjwmAFws4y73sfy8MBsWcpDTupjA3DMqpL-nvsLh6rmWSuw0t775wvtw67lkeihNDqAikrrsNVatG-rw86K0uAhRP0VgjpTqDsqePc0neupoqLGBD2JXCAb6kikCXocfpaDc-GSQs75HlnSivIM9b6yPDPJLRfmzhG8tZ_7rRdseyvgmHCWY6KFa0KV8CQQWvpMJp5ymU6k2bK6inEZeKLolsCYlipMqCYFc5RK8UJvRxLvGGpplqoTQEWeCnxXamaoAk1CGYaOCKVDHUHdmOkG3C48HcVWeLzof_EdlUXRPCLRwoENuF7ajkq5jbVWV-ZbRDbaJmssTv-0OINtw314-TvZOdTy8VRdwGY8y4eT8eV8Qf0AKp7KwQ |
| linkProvider | IOP Publishing |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT8IwFD4RNF4evKBGvNFEX3wYsHvrm4JEIwEeUHlb2rVVErMRGPx-W1YIJiQ--LZs37LlrOecr-n6fQC3XLgBU43ZwsSvWx7xfAsHkltYxDbzAkeSufPcezvsdPBgQHorVl_DdGRKf1Ud5kLBeQiNsC2pOdWW6ovEHsraiMsCbGqFEj2gu-7HcgFBTVvyhc7As1STw0aZ9Pf9v3pRQT1vpbW0Dv7xUoewb_gkesiBR7AhkhLsNBY2biXYW1EcPIaov0JUZwJ1R5p_T5O5rirSe01Qk2YUmZRHNOHocfiZn5wLmGhZ53tkyCvKUtT7SrNUFbmMqisn8NZ66jeeLeOxYMUOwZnlSGqrlHUI96lkHmbcFTaWnKmpqy0wYb5LtWsCxpKJkAfS0QySCUG07g5z3FMoJmkizgDpeuV7NpNYUYaAhywM6zRk9aBOAzvGsgx3i2hHsREg1z4Y31G-OZpETrQIYhlulthRLruxFlVR3yMyWTdZgzj_E1GB7V6zFbVfOq8XsKvoEMn_MLuEYjaeiivYimfZcDK-no-vH4cQ0Ck |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transformative+Opportunities+from+Data+Science+and+Big+Data+Analytics%3A+Applied+to+Photovoltaics&rft.jtitle=The+Electrochemical+Society+interface&rft.au=Bruckman%2C+Laura+S.&rft.date=2019-03-01&rft.pub=The+Electrochemical+Society&rft.issn=1064-8208&rft.eissn=1944-8783&rft.volume=28&rft.issue=1&rft.spage=57&rft.epage=61&rft_id=info:doi/10.1149%2F2.F07191if&rft.externalDocID=F07191IF |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-8208&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-8208&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-8208&client=summon |