Cooperative Localization in Wireless Sensor Networks With AOA Measurements
This paper researches the cooperative localization in wireless sensor networks (WSNs) with <inline-formula> <tex-math notation="LaTeX">2\pi /\pi </tex-math></inline-formula>-periodic angle-of-arrival (AOA) measurements. Two types of localizers are developed from the...
Uloženo v:
| Vydáno v: | IEEE transactions on wireless communications Ročník 21; číslo 8; s. 6760 - 6773 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1536-1276, 1558-2248, 1558-2248 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper researches the cooperative localization in wireless sensor networks (WSNs) with <inline-formula> <tex-math notation="LaTeX">2\pi /\pi </tex-math></inline-formula>-periodic angle-of-arrival (AOA) measurements. Two types of localizers are developed from the perspectives of Bayesian inference and convex optimization. When the orientation angles are known, the positioning problem is resolved by a phase-only generalized approximate message passing (POG-AMP) algorithm with importance sampling mechanism. From the perspective of convex optimization, the positioning problem under <inline-formula> <tex-math notation="LaTeX">2\pi /\pi </tex-math></inline-formula>-periodic AOAs is converted as a least square (LS) problem and then resolved by the gradient-descent/projected gradient-descent method named as Type-I LS localizer. When the orientations are unknown, expectation-maximization (EM) mechanism is introduced into the POG-AMP localizer, where node positions and orientations are alternatively updated through exchanging their statistical confidences. Type-II LS localizer is constructed by alternatively executing Type-I LS and a maximum-likelihood (ML) estimator of orientation. Cramér-Rao lower bounds (CRLBs) are derived for the proposed localizers. Simulation results validate that the proposed AMP-type and LS-type localizers outperform existing localizers, AMP-type localizers successfully handle nonlinear quantization losses, and EM-framework and ML estimator handle unknown orientation problem. AMP-type localizers outperform LS-type ones, and can approach to the CRLBs even under high noise contaminations. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1536-1276 1558-2248 1558-2248 |
| DOI: | 10.1109/TWC.2022.3152426 |