Cooperative Localization in Wireless Sensor Networks With AOA Measurements

This paper researches the cooperative localization in wireless sensor networks (WSNs) with <inline-formula> <tex-math notation="LaTeX">2\pi /\pi </tex-math></inline-formula>-periodic angle-of-arrival (AOA) measurements. Two types of localizers are developed from the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on wireless communications Ročník 21; číslo 8; s. 6760 - 6773
Hlavní autoři: Wang, Shengchu, Jiang, Xianbo, Wymeersch, Henk
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1536-1276, 1558-2248, 1558-2248
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper researches the cooperative localization in wireless sensor networks (WSNs) with <inline-formula> <tex-math notation="LaTeX">2\pi /\pi </tex-math></inline-formula>-periodic angle-of-arrival (AOA) measurements. Two types of localizers are developed from the perspectives of Bayesian inference and convex optimization. When the orientation angles are known, the positioning problem is resolved by a phase-only generalized approximate message passing (POG-AMP) algorithm with importance sampling mechanism. From the perspective of convex optimization, the positioning problem under <inline-formula> <tex-math notation="LaTeX">2\pi /\pi </tex-math></inline-formula>-periodic AOAs is converted as a least square (LS) problem and then resolved by the gradient-descent/projected gradient-descent method named as Type-I LS localizer. When the orientations are unknown, expectation-maximization (EM) mechanism is introduced into the POG-AMP localizer, where node positions and orientations are alternatively updated through exchanging their statistical confidences. Type-II LS localizer is constructed by alternatively executing Type-I LS and a maximum-likelihood (ML) estimator of orientation. Cramér-Rao lower bounds (CRLBs) are derived for the proposed localizers. Simulation results validate that the proposed AMP-type and LS-type localizers outperform existing localizers, AMP-type localizers successfully handle nonlinear quantization losses, and EM-framework and ML estimator handle unknown orientation problem. AMP-type localizers outperform LS-type ones, and can approach to the CRLBs even under high noise contaminations.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1536-1276
1558-2248
1558-2248
DOI:10.1109/TWC.2022.3152426