Complexity of initial-value problems for ordinary differential equations of order k

We study the worst-case ɛ -complexity of nonlinear initial-value problems u ( k ) ( x ) = g x , u ( x ) , u ′ ( x ) , … , u ( q ) ( x ) , x ∈ [ a , b ] , 0 ⩽ q < k , with given initial conditions. We assume that function g has r ( r ⩾ 1 ) continuous bounded partial derivatives. We consider two ty...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of Complexity Ročník 22; číslo 4; s. 514 - 532
Hlavný autor: Szczęsny, Marek
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.08.2006
Predmet:
ISSN:0885-064X, 1090-2708
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We study the worst-case ɛ -complexity of nonlinear initial-value problems u ( k ) ( x ) = g x , u ( x ) , u ′ ( x ) , … , u ( q ) ( x ) , x ∈ [ a , b ] , 0 ⩽ q < k , with given initial conditions. We assume that function g has r ( r ⩾ 1 ) continuous bounded partial derivatives. We consider two types of information about g: standard information defined by values of g or its partial derivatives, and linear information defined by the values of linear functionals on g. For standard information, we show that the worst-case complexity is Θ ( 1 / ɛ ) 1 / r , which is independent of k and q. By defining an algorithm using integral information, we show that the complexity is O ( 1 / ɛ ) 1 / ( r + k - q ) if linear information is used. Hence, linear information is more powerful than standard information. For q = 0 for instance, the complexity decreases from Θ ( 1 / ɛ ) 1 / r to O ( 1 / ɛ ) 1 / ( r + k ) . We also give a lower bound on the ɛ -complexity for linear information. We show that the complexity is Ω ( 1 / ɛ ) 1 / ( r + k ) , which means that upper and lower bounds match for q = 0 . The gap for the remaining values of q is an open problem.
ISSN:0885-064X
1090-2708
DOI:10.1016/j.jco.2006.03.002