An efficient robust aerodynamic design optimization method based on a multi-level hierarchical Kriging model and multi-fidelity expected improvement
•A regularized multi-fidelity framework for robust aerodynamic design optimization is established.•MHK and MFEI are used simultaneously to improve the optimization efficiency.•A progressive multi-round multi-fidelity optimization strategy is developed for extremely expensive robust optimization.•Div...
Uloženo v:
| Vydáno v: | Aerospace science and technology Ročník 152; s. 109401 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Masson SAS
01.09.2024
|
| Témata: | |
| ISSN: | 1270-9638 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •A regularized multi-fidelity framework for robust aerodynamic design optimization is established.•MHK and MFEI are used simultaneously to improve the optimization efficiency.•A progressive multi-round multi-fidelity optimization strategy is developed for extremely expensive robust optimization.•Diverse and mixed uncertainties are considered in the robust aerodynamic design optimization of airfoil and wing configurations.•A complicated robust design optimization of M6 wing with 36 design variables and 10 stochastic variables (including geometric and operational uncertainties) is implemented, which verifies the proposed method.
Robust aerodynamic design optimization (RADO) is developed to obtain aircraft designs with insensitive aerodynamic performance. The uncertainties in manufacturing, operating conditions, or freestream turbulence intensity are quantified and involved in the objective and constraint functions of RADO. The iterative uncertainty quantification (UQ) based on high-fidelity simulations for each design generated in the optimization greatly increases the computation cost, which is the main challenge of RADO. To alleviate this problem, an efficient robust RADO method based on a multi-level hierarchical Kriging (MHK) model and multi-fidelity expected improvement (MFEI) is proposed. A regularized multi-fidelity framework is established for RADO and a progressive multi-round multi-fidelity strategy is further developed to reduce the cost. The MHK surrogate is utilized for global optimization and UQ, which is constructed with very few high-fidelity simulations by taking advantage of cheap simulations of multiple lower fidelities. The MFEI can adaptively infill samples of arbitrary fidelity during the optimization to accelerate the convergence. The proposed RADO method is verified by drag minimization of RAE 2822 airfoil under operational uncertainties and then demonstrated by robust designs of a natural-laminal-flow airfoil NLF0416 at high lift under environmental uncertainty and ONERA M6 wing in transonic viscous flow under operational and geometric uncertainties. The results confirm that the proposed method significantly improves optimization efficiency and obtains robust aerodynamic design within an affordable computational budget. In contrast to the deterministic optimum, the robust configurations can retain a good performance when uncertainties exist. |
|---|---|
| AbstractList | •A regularized multi-fidelity framework for robust aerodynamic design optimization is established.•MHK and MFEI are used simultaneously to improve the optimization efficiency.•A progressive multi-round multi-fidelity optimization strategy is developed for extremely expensive robust optimization.•Diverse and mixed uncertainties are considered in the robust aerodynamic design optimization of airfoil and wing configurations.•A complicated robust design optimization of M6 wing with 36 design variables and 10 stochastic variables (including geometric and operational uncertainties) is implemented, which verifies the proposed method.
Robust aerodynamic design optimization (RADO) is developed to obtain aircraft designs with insensitive aerodynamic performance. The uncertainties in manufacturing, operating conditions, or freestream turbulence intensity are quantified and involved in the objective and constraint functions of RADO. The iterative uncertainty quantification (UQ) based on high-fidelity simulations for each design generated in the optimization greatly increases the computation cost, which is the main challenge of RADO. To alleviate this problem, an efficient robust RADO method based on a multi-level hierarchical Kriging (MHK) model and multi-fidelity expected improvement (MFEI) is proposed. A regularized multi-fidelity framework is established for RADO and a progressive multi-round multi-fidelity strategy is further developed to reduce the cost. The MHK surrogate is utilized for global optimization and UQ, which is constructed with very few high-fidelity simulations by taking advantage of cheap simulations of multiple lower fidelities. The MFEI can adaptively infill samples of arbitrary fidelity during the optimization to accelerate the convergence. The proposed RADO method is verified by drag minimization of RAE 2822 airfoil under operational uncertainties and then demonstrated by robust designs of a natural-laminal-flow airfoil NLF0416 at high lift under environmental uncertainty and ONERA M6 wing in transonic viscous flow under operational and geometric uncertainties. The results confirm that the proposed method significantly improves optimization efficiency and obtains robust aerodynamic design within an affordable computational budget. In contrast to the deterministic optimum, the robust configurations can retain a good performance when uncertainties exist. |
| ArticleNumber | 109401 |
| Author | Song, Wen-ping Zhang, Yu Han, Zhong-hua |
| Author_xml | – sequence: 1 givenname: Yu orcidid: 0000-0003-2494-9379 surname: Zhang fullname: Zhang, Yu email: zhangyu91@mail.nwpu.edu.cn – sequence: 2 givenname: Zhong-hua orcidid: 0000-0001-7942-1091 surname: Han fullname: Han, Zhong-hua – sequence: 3 givenname: Wen-ping surname: Song fullname: Song, Wen-ping |
| BookMark | eNp9kMlOAzEMhnMAifUBuOUFpmQyWyNOCLEJJC5wjrI4rauZpEpCRXkOHpiUcuLAyfplf5b9nZADHzwQclGzWc3q_nI1UynPOONtyaJl9QE5rvnAKtE38yNyktKKMcZFy4_J17Wn4BwaBJ9pDPo9ZaogBrv1akJDLSRceBrWGSf8VBmDpxPkZbBUqwSWlqzo9D5mrEbYwEiXCFFFs0SjRvoUcYF-QadgS0t5-zvqsGTMWwofazC57MFpHcMGpnLHGTl0akxw_ltPydvd7evNQ_X8cv94c_1cGS6GXEGrW8GbjptGa-OYdqJzgxBN080V1_O5bdq2Fnpgqu8abYXune1Np1TPemFZc0rq_V4TQ0oRnFxHnFTcyprJnUq5kkWl3KmUe5WFGf4wBvOPlhwVjv-SV3sSykubIkmmnXUDFmNRIG3Af-hvF_SWqA |
| CitedBy_id | crossref_primary_10_1016_j_cma_2025_117952 crossref_primary_10_1080_19942060_2025_2528120 |
| Cites_doi | 10.1016/j.ast.2015.04.011 10.1016/j.ast.2023.108465 10.1016/j.paerosci.2008.11.001 10.2514/1.J056661 10.1016/j.ast.2021.106572 10.1007/s00158-021-02931-1 10.1016/j.cja.2020.01.015 10.1007/s00366-021-01404-9 10.2514/1.J051243 10.1007/s00158-022-03283-0 10.1016/j.ast.2017.06.009 10.1109/72.298229 10.1137/15M1046812 10.1016/j.cma.2016.10.042 10.1016/j.ast.2023.108725 10.1007/s00158-022-03484-7 10.1016/j.paerosci.2005.02.001 10.1093/biomet/87.1.1 10.1016/j.ast.2023.108854 10.1007/s00158-016-1546-7 10.1016/j.paerosci.2024.101007 10.1023/A:1008306431147 10.2514/1.J054128 10.2514/1.J060676 10.1016/j.ast.2023.108592 10.1016/j.cja.2019.05.001 10.2514/1.J058283 10.1016/j.ast.2022.107764 10.1016/j.paerosci.2011.05.001 10.1007/BF01061285 10.1007/s00158-018-1971-x 10.1016/j.energy.2023.128011 10.1016/j.ast.2012.01.006 10.1007/s00158-016-1550-y 10.2514/1.12466 10.1016/j.cma.2020.113632 10.1023/A:1012771025575 10.1007/s00158-020-02772-4 10.1146/annurev.fluid.010908.165248 |
| ContentType | Journal Article |
| Copyright | 2024 |
| Copyright_xml | – notice: 2024 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ast.2024.109401 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_ast_2024_109401 S1270963824005327 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABJNI ABMAC ABXDB ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHPGS AI. AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSZ T5K T9H VH1 XPP ZMT ~G- 9DU AATTM AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c297t-e4b492352c3bbcf0bf95f7993358a2b88d34419b70a653bd9b6fd6c5aa6069d03 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001283647800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1270-9638 |
| IngestDate | Sat Nov 29 02:39:56 EST 2025 Tue Nov 18 20:54:01 EST 2025 Sat Feb 08 15:52:20 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Uncertainty quantification Robust aerodynamic design optimization Multi-fidelity optimization Aerodynamics Surrogate model |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-e4b492352c3bbcf0bf95f7993358a2b88d34419b70a653bd9b6fd6c5aa6069d03 |
| ORCID | 0000-0003-2494-9379 0000-0001-7942-1091 |
| ParticipantIDs | crossref_primary_10_1016_j_ast_2024_109401 crossref_citationtrail_10_1016_j_ast_2024_109401 elsevier_sciencedirect_doi_10_1016_j_ast_2024_109401 |
| PublicationCentury | 2000 |
| PublicationDate | September 2024 2024-09-00 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Aerospace science and technology |
| PublicationYear | 2024 |
| Publisher | Elsevier Masson SAS |
| Publisher_xml | – name: Elsevier Masson SAS |
| References | Sabater, Le Maître, Congedo, Görtz (bib0022) 2021; 376 Zhang, Taflanidis, Medina (bib0021) 2017; 315 Han, Göertz, Zimmermann (bib0026) 2013; 25 Djeddi, Ekici (bib0046) 2024; 145 Zhang, Li, Dong, Zhang, Zhang, Lu (bib0008) 2023; 142 Jones, Schonlau, Welch (bib0016) 1998; 13 Lin, Gong, Zhang, Kou, Zhou (bib0040) 2022; 128 Cheng, Lin, Yi (bib0042) 2022; 65 Zhao, Gao, Xu, Zhang (bib0007) 2018; 26 Jameson (bib0002) 1988; 3 Chen, Rao, Xiong, Fan, Shi, Yang (bib0047) 2023; 140 Zhao, Gao, Gao (bib0048) 2017; 68 Najm (bib0011) 2009; 41 Leifsson, Koziel, Tesfahunegn (bib0027) 2016; 54 Jones (bib0017) 2001; 21 Sabater (bib0023) 2022 Huang, Liu, Zheng, Xu, Duan (bib0044) 2023; 66 Walters, Huyse (bib0005) 2002 Palar, Shimoyama (bib0032) 2017 Guo, Wang, Song, Li (bib0043) 2020; 64 Gano, Renaud, Sanders (bib0025) 2005; 43 He, Sun, Song, Wang (bib0036) 2021; 111 Cheng, Zhou, Lu, Zhao, Han, Yang (bib0020) 2023; 278 Liu, Song, Han, Zhang (bib0014) 2017; 55 Shah, Hosder, Koziel, Tesfahunegn, Leifsson (bib0028) 2015; 45 Han, Göertz (bib0031) 2012; 50 Han, Qiao, Zhang, Chen, Yang, Ding, Zhang, Song, Song (bib0034) 2024; 146 Liu, Han, Zhang, Song, Song, Gui, Tang (bib0015) 2019; 93 Antunes, Azevedo (bib0001) 2014; 51 Han, Chen, Zhang, Xu, Zhu, Song (bib0049) 2018; 56 Han, Zimmermann, Göertz (bib0030) 2012; 50 Queipo, Haftka, Shyy, Goel, Vaidyanathan, Tucker (bib0003) 2005; 41 Lin, Hu, Zhou (bib0039) 2023; 143 Kennedy, O'Hagan (bib0029) 2000; 87 Shu, Jiang, Wang (bib0038) 2021; 63 Sabater, Bekemeyer, Göertz (bib0010) 2021 Zhang, Han, Song (bib0045) 2024 Elanayar, Shin (bib0012) 1994; 5 Jiang, Cheng, Zhou, Shu, Hu (bib0041) 2019; 57 Park, Haftka, Kim (bib0024) 2017; 55 Han, Xu, Zhang, Zhang, Zhang (bib0033) 2020; 33 Sabater, Bekemeyer, Görtz (bib0018) 2022; 60 Tao, Sun, Guo, Wang (bib0019) 2020; 33 He, Sun, Song, Wang (bib0037) 2022; 38 Zhang, Han, Zhang (bib0035) 2018; 58 Sabater, Göertz (bib0009) 2019 Owen, Challenor, Menon, Bennani (bib0013) 2017; 5 Forrester, Keane (bib0004) 2009; 45 Yao, Chen, Luo, Tooren, Guo (bib0006) 2011; 47 Kennedy (10.1016/j.ast.2024.109401_bib0029) 2000; 87 Leifsson (10.1016/j.ast.2024.109401_bib0027) 2016; 54 Najm (10.1016/j.ast.2024.109401_bib0011) 2009; 41 Lin (10.1016/j.ast.2024.109401_bib0039) 2023; 143 Cheng (10.1016/j.ast.2024.109401_bib0020) 2023; 278 Shu (10.1016/j.ast.2024.109401_bib0038) 2021; 63 Han (10.1016/j.ast.2024.109401_bib0034) 2024; 146 Sabater (10.1016/j.ast.2024.109401_bib0010) 2021 Tao (10.1016/j.ast.2024.109401_bib0019) 2020; 33 Walters (10.1016/j.ast.2024.109401_bib0005) 2002 Han (10.1016/j.ast.2024.109401_bib0033) 2020; 33 Han (10.1016/j.ast.2024.109401_bib0031) 2012; 50 Sabater (10.1016/j.ast.2024.109401_bib0022) 2021; 376 Zhang (10.1016/j.ast.2024.109401_bib0035) 2018; 58 Djeddi (10.1016/j.ast.2024.109401_bib0046) 2024; 145 Liu (10.1016/j.ast.2024.109401_bib0015) 2019; 93 Sabater (10.1016/j.ast.2024.109401_bib0018) 2022; 60 Han (10.1016/j.ast.2024.109401_bib0030) 2012; 50 Zhang (10.1016/j.ast.2024.109401_bib0021) 2017; 315 Jones (10.1016/j.ast.2024.109401_bib0016) 1998; 13 Gano (10.1016/j.ast.2024.109401_bib0025) 2005; 43 Han (10.1016/j.ast.2024.109401_bib0026) 2013; 25 Queipo (10.1016/j.ast.2024.109401_bib0003) 2005; 41 Park (10.1016/j.ast.2024.109401_bib0024) 2017; 55 Zhang (10.1016/j.ast.2024.109401_bib0045) 2024 Yao (10.1016/j.ast.2024.109401_bib0006) 2011; 47 Jiang (10.1016/j.ast.2024.109401_bib0041) 2019; 57 He (10.1016/j.ast.2024.109401_bib0036) 2021; 111 Zhang (10.1016/j.ast.2024.109401_bib0008) 2023; 142 Antunes (10.1016/j.ast.2024.109401_bib0001) 2014; 51 Zhao (10.1016/j.ast.2024.109401_bib0007) 2018; 26 Guo (10.1016/j.ast.2024.109401_bib0043) 2020; 64 Zhao (10.1016/j.ast.2024.109401_bib0048) 2017; 68 Sabater (10.1016/j.ast.2024.109401_bib0009) 2019 Palar (10.1016/j.ast.2024.109401_bib0032) 2017 Huang (10.1016/j.ast.2024.109401_bib0044) 2023; 66 Liu (10.1016/j.ast.2024.109401_bib0014) 2017; 55 Forrester (10.1016/j.ast.2024.109401_bib0004) 2009; 45 Jameson (10.1016/j.ast.2024.109401_bib0002) 1988; 3 Sabater (10.1016/j.ast.2024.109401_bib0023) 2022 Cheng (10.1016/j.ast.2024.109401_bib0042) 2022; 65 He (10.1016/j.ast.2024.109401_bib0037) 2022; 38 Han (10.1016/j.ast.2024.109401_bib0049) 2018; 56 Lin (10.1016/j.ast.2024.109401_bib0040) 2022; 128 Elanayar (10.1016/j.ast.2024.109401_bib0012) 1994; 5 Jones (10.1016/j.ast.2024.109401_bib0017) 2001; 21 Shah (10.1016/j.ast.2024.109401_bib0028) 2015; 45 Chen (10.1016/j.ast.2024.109401_bib0047) 2023; 140 Owen (10.1016/j.ast.2024.109401_bib0013) 2017; 5 |
| References_xml | – volume: 140 year: 2023 ident: bib0047 article-title: Adjoint-based robust optimization design of laminar flow airfoil under flight condition uncertainties publication-title: Aerosp. Sci. Technol. – volume: 5 start-page: 594603 year: 1994 ident: bib0012 article-title: Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems publication-title: IEEE Trans. Neural Netw. – volume: 68 start-page: 530542 year: 2017 ident: bib0048 article-title: Effective robust design of high lift NLF airfoil under multiparameter uncertainty publication-title: Aerosp. Sci. Technol. – volume: 54 start-page: 531 year: 2016 end-page: 541 ident: bib0027 article-title: Multiobjective aerodynamic optimization by variable-fidelity models and response surface surrogates publication-title: AIAA J. – volume: 55 start-page: 925 year: 2017 end-page: 943 ident: bib0014 article-title: Efficient aerodynamic shape optimization of transonic wings using a parallel infilling strategy and surrogate models publication-title: Struct. Multidiscip. Optim. – volume: 50 start-page: 1205 year: 2012 end-page: 1210 ident: bib0030 article-title: An alternative cokriging model for variable fidelity surrogate modeling publication-title: AIAA J. – volume: 21 start-page: 345 year: 2001 end-page: 383 ident: bib0017 article-title: A taxonomy of global optimization methods based on response surfaces publication-title: J. Glob. Optim. – volume: 55 start-page: 1029 year: 2017 end-page: 1050 ident: bib0024 article-title: Remarks on multi-fidelity surrogates publication-title: Struct. Multidisc. Optim. – start-page: 1 year: 2024 end-page: 23 ident: bib0045 article-title: Multi-fidelity expected improvement based on multi-level hierarchical kriging model for efficient aerodynamic design optimization publication-title: Eng. Optim. – volume: 25 year: 2013 ident: bib0026 article-title: Improving variable fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function publication-title: Aerosp. Sci. Technol. – volume: 5 start-page: 403435 year: 2017 ident: bib0013 article-title: Comparison of surrogate-based uncertainty quantification methods for computationally expensive simulators publication-title: SIAM/ASA J. Uncertain. Quantif. – volume: 33 start-page: 31 year: 2020 end-page: 47 ident: bib0033 article-title: Efficient aerodynamic shape optimization using variable fidelity surrogate models and multilevel computational grids publication-title: Chin. J. Aeronaut. – year: 2002 ident: bib0005 article-title: Uncertainty Analysis For Fluid Mechanics With applications. NASA CR2002211449 – volume: 278 year: 2023 ident: bib0020 article-title: Robust aerodynamic optimization and design exploration of a wide-chord transonic fan under geometric and operational uncertainties publication-title: Energy – volume: 128 year: 2022 ident: bib0040 article-title: A probability of improvement-based multi-fidelity robust optimization approach for aerospace products design publication-title: Aerosp. Sci. Technol. – volume: 45 start-page: 17 year: 2015 end-page: 29 ident: bib0028 article-title: Multi-fidelity robust aerodynamic design optimization under mixed uncertainty publication-title: Aerosp. Sci. Technol. – volume: 60 start-page: 677 year: 2022 end-page: 782 ident: bib0018 article-title: Robust design of transonic natural laminar flow wings under environmental and operational uncertainties publication-title: AIAA J. – volume: 43 start-page: 2422 year: 2005 end-page: 2430 ident: bib0025 article-title: Hybrid variable fidelity optimization by using a kriging-based scaling function publication-title: AIAA J. – year: 2022 ident: bib0023 article-title: Development of Efficient Surrogate-Assisted Methods to Support Robust Design of Transonic Wings – volume: 66 start-page: 30 year: 2023 ident: bib0044 article-title: A proportional expected improvement criterion-based multi-fidelity sequential optimization method publication-title: Struct. Multidiscip. Optim. – volume: 50 start-page: 1285 year: 2012 end-page: 1296 ident: bib0031 article-title: Hierarchical kriging model for variable fidelity surrogate modeling publication-title: AIAA J. – volume: 376 year: 2021 ident: bib0022 article-title: A Bayesian approach for quantile optimization problems with high-dimensional uncertainty sources publication-title: Comput. Methods Appl. Mech. Eng. – volume: 145 year: 2024 ident: bib0046 article-title: Natural laminar flow airfoil design via adjoint-based transition onset delay publication-title: Aerosp. Sci. Technol. – volume: 33 start-page: 1573 year: 2020 end-page: 1588 ident: bib0019 article-title: Application of a PCA-DBN-based surrogate model to robust aerodynamic design optimization publication-title: Chin. J. Aeronaut. – start-page: 0071 year: 2021 ident: bib0010 article-title: Robust design of transonic natural laminar flow wings under environmental and operational uncertainties publication-title: Proceedings of the AIAA Scitech 2021 Forum – volume: 143 year: 2023 ident: bib0039 article-title: Parallel multi-objective Bayesian optimization approaches based on multi-fidelity surrogate modeling publication-title: Aerosp. Sci. Technol. – volume: 56 year: 2018 ident: bib0049 article-title: Aerodynamic shape optimization of natural-laminar-flow wing using surrogate-based approach publication-title: AIAA J. – start-page: 3261 year: 2017 ident: bib0032 article-title: Multi-fidelity uncertainty analysis in CFD using hierarchical kriging publication-title: Proceedings of the 35th AIAA Applied Aerodynamics Conference – volume: 45 start-page: 50 year: 2009 end-page: 79 ident: bib0004 article-title: Recent advances in surrogate-based optimization publication-title: Prog. Aerosp. Sci. – volume: 315 start-page: 369 year: 2017 end-page: 395 ident: bib0021 article-title: Sequential approximate optimization for design under uncertainty problems utilizing kriging metamodeling in augmented input space publication-title: Comput. Methods Appl. Mech. Eng. – volume: 111 year: 2021 ident: bib0036 article-title: Variable-fidelity expected improvement based efficient global optimization of expensive problems in presence of simulation failures and its parallelization publication-title: Aerosp. Sci. Technol. – volume: 47 start-page: 450479 year: 2011 ident: bib0006 article-title: Review of uncertaintybased multidisciplinary design optimization methods for aerospace vehicles publication-title: Prog. Aerosp. Sci. – volume: 38 start-page: 3663 year: 2022 end-page: 3689 ident: bib0037 article-title: Variable-fidelity hypervolume-based expected improvement criteria for multi-objective efficient global optimization of expensive functions publication-title: Eng. Compos. – volume: 58 start-page: 1431 year: 2018 end-page: 1451 ident: bib0035 article-title: Variable fidelity expected improvement method for efficient global optimization of expensive functions publication-title: Struct. Multidiscip. Optim. – volume: 57 start-page: 5416 year: 2019 end-page: 5430 ident: bib0041 article-title: Variable-fidelity lower confidence bounding approach for engineering optimization problems with expensive simulations publication-title: AIAA J. – volume: 64 start-page: 1457 year: 2020 end-page: 1468 ident: bib0043 article-title: Parallel multi-fidelity expected improvement method for efficient global optimization publication-title: Struct. Multidiscip. Optim. – volume: 65 start-page: 188 year: 2022 ident: bib0042 article-title: An enhanced variable‑fidelity optimization approach for constrained optimization problems and its parallelization publication-title: Struct. Multidiscip. Optim. – volume: 3 start-page: 233 year: 1988 end-page: 260 ident: bib0002 article-title: Aerodynamic design via control theory publication-title: J. Sci. Comput. – volume: 26 start-page: 685 year: 2018 end-page: 732 ident: bib0007 article-title: Review of robust aerodynamic design optimization for air vehicles publication-title: Arch. Comput. Methods Eng. – volume: 93 year: 2019 ident: bib0015 article-title: Surrogate-based aerodynamic shape optimization of hypersonic flows considering transonic performance publication-title: Aerosp. Sci. Technol. – volume: 13 start-page: 455 year: 1998 end-page: 492 ident: bib0016 article-title: Efficient global optimization of expensive black-box functions publication-title: J. Glob. Optim. – volume: 146 year: 2024 ident: bib0034 article-title: Recent progress of efficient low-boom design and optimization methods publication-title: Prog. Aerosp. Sci. – volume: 51 start-page: 1002 year: 2014 end-page: 1012 ident: bib0001 article-title: Studies in aerodynamic optimization based on genetic algorithms publication-title: AIAA J. – volume: 63 start-page: 1709 year: 2021 end-page: 1719 ident: bib0038 article-title: A multi-fidelity Bayesian optimization approach based on the expected further improvement publication-title: Struct. Multidiscip. Optim. – volume: 41 start-page: 3552 year: 2009 ident: bib0011 article-title: Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics publication-title: Annu. Rev. Fluid Mech. – volume: 142 year: 2023 ident: bib0008 article-title: A discrete adjoint framework coupled with adaptive PCE for robust aerodynamic optimization of turbomachinery under flow uncertainty publication-title: Aerosp. Sci. Technol. – volume: 41 start-page: 1 year: 2005 end-page: 28 ident: bib0003 article-title: Surrogate-based analysis and optimization publication-title: Prog. Aerosp. Sci. – start-page: 2214 year: 2019 ident: bib0009 article-title: An efficient bi-level surrogate approach for optimizing shock control bumps under uncertainty publication-title: Proceedings of the AIAA Scitech 2019 Forum – volume: 87 start-page: 113 year: 2000 ident: bib0029 article-title: Predicting the output from a complex computer code when fast approximations are available publication-title: Biometrika – start-page: 2214 year: 2019 ident: 10.1016/j.ast.2024.109401_bib0009 article-title: An efficient bi-level surrogate approach for optimizing shock control bumps under uncertainty – volume: 45 start-page: 17 year: 2015 ident: 10.1016/j.ast.2024.109401_bib0028 article-title: Multi-fidelity robust aerodynamic design optimization under mixed uncertainty publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2015.04.011 – volume: 140 year: 2023 ident: 10.1016/j.ast.2024.109401_bib0047 article-title: Adjoint-based robust optimization design of laminar flow airfoil under flight condition uncertainties publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2023.108465 – volume: 45 start-page: 50 issue: 1–3 year: 2009 ident: 10.1016/j.ast.2024.109401_bib0004 article-title: Recent advances in surrogate-based optimization publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2008.11.001 – volume: 56 issue: 7 year: 2018 ident: 10.1016/j.ast.2024.109401_bib0049 article-title: Aerodynamic shape optimization of natural-laminar-flow wing using surrogate-based approach publication-title: AIAA J. doi: 10.2514/1.J056661 – volume: 111 year: 2021 ident: 10.1016/j.ast.2024.109401_bib0036 article-title: Variable-fidelity expected improvement based efficient global optimization of expensive problems in presence of simulation failures and its parallelization publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2021.106572 – volume: 64 start-page: 1457 year: 2020 ident: 10.1016/j.ast.2024.109401_bib0043 article-title: Parallel multi-fidelity expected improvement method for efficient global optimization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-021-02931-1 – volume: 33 start-page: 1573 issue: 6 year: 2020 ident: 10.1016/j.ast.2024.109401_bib0019 article-title: Application of a PCA-DBN-based surrogate model to robust aerodynamic design optimization publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2020.01.015 – volume: 38 start-page: 3663 year: 2022 ident: 10.1016/j.ast.2024.109401_bib0037 article-title: Variable-fidelity hypervolume-based expected improvement criteria for multi-objective efficient global optimization of expensive functions publication-title: Eng. Compos. doi: 10.1007/s00366-021-01404-9 – volume: 50 start-page: 1285 issue: 5 year: 2012 ident: 10.1016/j.ast.2024.109401_bib0031 article-title: Hierarchical kriging model for variable fidelity surrogate modeling publication-title: AIAA J. doi: 10.2514/1.J051243 – volume: 65 start-page: 188 year: 2022 ident: 10.1016/j.ast.2024.109401_bib0042 article-title: An enhanced variable‑fidelity optimization approach for constrained optimization problems and its parallelization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-022-03283-0 – volume: 68 start-page: 530542 year: 2017 ident: 10.1016/j.ast.2024.109401_bib0048 article-title: Effective robust design of high lift NLF airfoil under multiparameter uncertainty publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2017.06.009 – volume: 5 start-page: 594603 issue: 4 year: 1994 ident: 10.1016/j.ast.2024.109401_bib0012 article-title: Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.298229 – volume: 5 start-page: 403435 issue: 1 year: 2017 ident: 10.1016/j.ast.2024.109401_bib0013 article-title: Comparison of surrogate-based uncertainty quantification methods for computationally expensive simulators publication-title: SIAM/ASA J. Uncertain. Quantif. doi: 10.1137/15M1046812 – volume: 315 start-page: 369 year: 2017 ident: 10.1016/j.ast.2024.109401_bib0021 article-title: Sequential approximate optimization for design under uncertainty problems utilizing kriging metamodeling in augmented input space publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2016.10.042 – volume: 143 year: 2023 ident: 10.1016/j.ast.2024.109401_bib0039 article-title: Parallel multi-objective Bayesian optimization approaches based on multi-fidelity surrogate modeling publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2023.108725 – volume: 66 start-page: 30 year: 2023 ident: 10.1016/j.ast.2024.109401_bib0044 article-title: A proportional expected improvement criterion-based multi-fidelity sequential optimization method publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-022-03484-7 – volume: 41 start-page: 1 year: 2005 ident: 10.1016/j.ast.2024.109401_bib0003 article-title: Surrogate-based analysis and optimization publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2005.02.001 – volume: 87 start-page: 113 issue: 1 year: 2000 ident: 10.1016/j.ast.2024.109401_bib0029 article-title: Predicting the output from a complex computer code when fast approximations are available publication-title: Biometrika doi: 10.1093/biomet/87.1.1 – volume: 145 year: 2024 ident: 10.1016/j.ast.2024.109401_bib0046 article-title: Natural laminar flow airfoil design via adjoint-based transition onset delay publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2023.108854 – volume: 55 start-page: 925 issue: 3 year: 2017 ident: 10.1016/j.ast.2024.109401_bib0014 article-title: Efficient aerodynamic shape optimization of transonic wings using a parallel infilling strategy and surrogate models publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-016-1546-7 – volume: 146 year: 2024 ident: 10.1016/j.ast.2024.109401_bib0034 article-title: Recent progress of efficient low-boom design and optimization methods publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2024.101007 – volume: 93 issue: 10 year: 2019 ident: 10.1016/j.ast.2024.109401_bib0015 article-title: Surrogate-based aerodynamic shape optimization of hypersonic flows considering transonic performance publication-title: Aerosp. Sci. Technol. – volume: 13 start-page: 455 issue: 4 year: 1998 ident: 10.1016/j.ast.2024.109401_bib0016 article-title: Efficient global optimization of expensive black-box functions publication-title: J. Glob. Optim. doi: 10.1023/A:1008306431147 – volume: 54 start-page: 531 issue: 2 year: 2016 ident: 10.1016/j.ast.2024.109401_bib0027 article-title: Multiobjective aerodynamic optimization by variable-fidelity models and response surface surrogates publication-title: AIAA J. doi: 10.2514/1.J054128 – start-page: 0071 year: 2021 ident: 10.1016/j.ast.2024.109401_bib0010 article-title: Robust design of transonic natural laminar flow wings under environmental and operational uncertainties – year: 2002 ident: 10.1016/j.ast.2024.109401_bib0005 – volume: 60 start-page: 677 issue: 2 year: 2022 ident: 10.1016/j.ast.2024.109401_bib0018 article-title: Robust design of transonic natural laminar flow wings under environmental and operational uncertainties publication-title: AIAA J. doi: 10.2514/1.J060676 – volume: 51 start-page: 1002 issue: 3 year: 2014 ident: 10.1016/j.ast.2024.109401_bib0001 article-title: Studies in aerodynamic optimization based on genetic algorithms publication-title: AIAA J. – volume: 142 year: 2023 ident: 10.1016/j.ast.2024.109401_bib0008 article-title: A discrete adjoint framework coupled with adaptive PCE for robust aerodynamic optimization of turbomachinery under flow uncertainty publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2023.108592 – start-page: 3261 year: 2017 ident: 10.1016/j.ast.2024.109401_bib0032 article-title: Multi-fidelity uncertainty analysis in CFD using hierarchical kriging – volume: 33 start-page: 31 issue: 1 year: 2020 ident: 10.1016/j.ast.2024.109401_bib0033 article-title: Efficient aerodynamic shape optimization using variable fidelity surrogate models and multilevel computational grids publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2019.05.001 – volume: 57 start-page: 5416 year: 2019 ident: 10.1016/j.ast.2024.109401_bib0041 article-title: Variable-fidelity lower confidence bounding approach for engineering optimization problems with expensive simulations publication-title: AIAA J. doi: 10.2514/1.J058283 – volume: 26 start-page: 685 year: 2018 ident: 10.1016/j.ast.2024.109401_bib0007 article-title: Review of robust aerodynamic design optimization for air vehicles publication-title: Arch. Comput. Methods Eng. – volume: 128 year: 2022 ident: 10.1016/j.ast.2024.109401_bib0040 article-title: A probability of improvement-based multi-fidelity robust optimization approach for aerospace products design publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2022.107764 – volume: 47 start-page: 450479 issue: 6 year: 2011 ident: 10.1016/j.ast.2024.109401_bib0006 article-title: Review of uncertaintybased multidisciplinary design optimization methods for aerospace vehicles publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2011.05.001 – volume: 3 start-page: 233 issue: 3 year: 1988 ident: 10.1016/j.ast.2024.109401_bib0002 article-title: Aerodynamic design via control theory publication-title: J. Sci. Comput. doi: 10.1007/BF01061285 – volume: 58 start-page: 1431 issue: 4 year: 2018 ident: 10.1016/j.ast.2024.109401_bib0035 article-title: Variable fidelity expected improvement method for efficient global optimization of expensive functions publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-018-1971-x – volume: 278 year: 2023 ident: 10.1016/j.ast.2024.109401_bib0020 article-title: Robust aerodynamic optimization and design exploration of a wide-chord transonic fan under geometric and operational uncertainties publication-title: Energy doi: 10.1016/j.energy.2023.128011 – volume: 25 issue: 1 year: 2013 ident: 10.1016/j.ast.2024.109401_bib0026 article-title: Improving variable fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2012.01.006 – volume: 55 start-page: 1029 issue: 3 year: 2017 ident: 10.1016/j.ast.2024.109401_bib0024 article-title: Remarks on multi-fidelity surrogates publication-title: Struct. Multidisc. Optim. doi: 10.1007/s00158-016-1550-y – volume: 43 start-page: 2422 issue: 11 year: 2005 ident: 10.1016/j.ast.2024.109401_bib0025 article-title: Hybrid variable fidelity optimization by using a kriging-based scaling function publication-title: AIAA J. doi: 10.2514/1.12466 – volume: 376 year: 2021 ident: 10.1016/j.ast.2024.109401_bib0022 article-title: A Bayesian approach for quantile optimization problems with high-dimensional uncertainty sources publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113632 – volume: 21 start-page: 345 issue: 4 year: 2001 ident: 10.1016/j.ast.2024.109401_bib0017 article-title: A taxonomy of global optimization methods based on response surfaces publication-title: J. Glob. Optim. doi: 10.1023/A:1012771025575 – start-page: 1 year: 2024 ident: 10.1016/j.ast.2024.109401_bib0045 article-title: Multi-fidelity expected improvement based on multi-level hierarchical kriging model for efficient aerodynamic design optimization publication-title: Eng. Optim. – year: 2022 ident: 10.1016/j.ast.2024.109401_bib0023 – volume: 63 start-page: 1709 year: 2021 ident: 10.1016/j.ast.2024.109401_bib0038 article-title: A multi-fidelity Bayesian optimization approach based on the expected further improvement publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-020-02772-4 – volume: 41 start-page: 3552 year: 2009 ident: 10.1016/j.ast.2024.109401_bib0011 article-title: Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.010908.165248 – volume: 50 start-page: 1205 issue: 5 year: 2012 ident: 10.1016/j.ast.2024.109401_bib0030 article-title: An alternative cokriging model for variable fidelity surrogate modeling publication-title: AIAA J. doi: 10.2514/1.J051243 |
| SSID | ssj0002942 |
| Score | 2.3887918 |
| Snippet | •A regularized multi-fidelity framework for robust aerodynamic design optimization is established.•MHK and MFEI are used simultaneously to improve the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 109401 |
| SubjectTerms | Aerodynamics Multi-fidelity optimization Robust aerodynamic design optimization Surrogate model Uncertainty quantification |
| Title | An efficient robust aerodynamic design optimization method based on a multi-level hierarchical Kriging model and multi-fidelity expected improvement |
| URI | https://dx.doi.org/10.1016/j.ast.2024.109401 |
| Volume | 152 |
| WOSCitedRecordID | wos001283647800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1270-9638 databaseCode: AIEXJ dateStart: 19970101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0002942 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcKp6iFJAPnIiCss7D8TFCRTwrpC2wcIn8SNqtluxqH1X_And-MDO2k81SQIDEJdqNYifKfJkZj7-ZIeSxYinYiWEWCqNggTKE5U5uhiqMc5Op2kQ1t7lVH97wo6N8PBbvBoOvbS7M-ZQ3TX5xIeb_VdRwDoSNqbN_Ie5uUjgBv0HocASxw_GPBF80SNKY2ETHYDFT6-UqkBXoSdd7PjCWsxHMQFd88UmYvo90gCbN4PaBdETDcIqUogDbZdsNB5Tna9tJ68S10LFbD-7SGutloUuPPQM0-rETG6_YUGvaWrfwLKDGsLSt1yuWxHkpxN-Fsj-tN2rS6sjPp7PmJDxddxZl5HnFH6smnLe22IcyWNJxtXx8rc2xeQvrBtSWxainmRmPQtQWW6rbVb-9ZAZcROLsqVwiXZYlWDQr8Xfarq49wnlxWuTSpjHjV8gu46kABblbvDwcv-rMOhO2E1P3HO0WuSUL_nCjnzs5Pcfl-AbZ8ysOWjik3CSDqrlFrvfqUN4m34qGdpihDjO0hxnqMEP7mKEOM9RihsJ_SXuYoX3MUI8ZajFDQdx0GzO0xQztYeYOef_88PjZi9C36wg1E3wVVonCan8p07FSuo5ULdKag_8bp7lkKs9NDL63UDySWRorI1RWm0ynUsIiWpgovkt2mllT3SM0iWJWqVhXkZSJzrlMmUxVxqTKTKy52SdR-35L7WvZY0uVadmSFs9KEEmJIimdSPbJk27I3BVy-d3FSSu00n8LzsMsAWG_Hnb_34YdkGubr-EB2Vkt1tVDclWfrybLxSOPw-9_zbUu |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+robust+aerodynamic+design+optimization+method+based+on+a+multi-level+hierarchical+Kriging+model+and+multi-fidelity+expected+improvement&rft.jtitle=Aerospace+science+and+technology&rft.au=Zhang%2C+Yu&rft.au=Han%2C+Zhong-hua&rft.au=Song%2C+Wen-ping&rft.date=2024-09-01&rft.pub=Elsevier+Masson+SAS&rft.issn=1270-9638&rft.volume=152&rft_id=info:doi/10.1016%2Fj.ast.2024.109401&rft.externalDocID=S1270963824005327 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1270-9638&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1270-9638&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1270-9638&client=summon |