An efficient robust aerodynamic design optimization method based on a multi-level hierarchical Kriging model and multi-fidelity expected improvement

•A regularized multi-fidelity framework for robust aerodynamic design optimization is established.•MHK and MFEI are used simultaneously to improve the optimization efficiency.•A progressive multi-round multi-fidelity optimization strategy is developed for extremely expensive robust optimization.•Div...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Aerospace science and technology Ročník 152; s. 109401
Hlavní autoři: Zhang, Yu, Han, Zhong-hua, Song, Wen-ping
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Masson SAS 01.09.2024
Témata:
ISSN:1270-9638
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A regularized multi-fidelity framework for robust aerodynamic design optimization is established.•MHK and MFEI are used simultaneously to improve the optimization efficiency.•A progressive multi-round multi-fidelity optimization strategy is developed for extremely expensive robust optimization.•Diverse and mixed uncertainties are considered in the robust aerodynamic design optimization of airfoil and wing configurations.•A complicated robust design optimization of M6 wing with 36 design variables and 10 stochastic variables (including geometric and operational uncertainties) is implemented, which verifies the proposed method. Robust aerodynamic design optimization (RADO) is developed to obtain aircraft designs with insensitive aerodynamic performance. The uncertainties in manufacturing, operating conditions, or freestream turbulence intensity are quantified and involved in the objective and constraint functions of RADO. The iterative uncertainty quantification (UQ) based on high-fidelity simulations for each design generated in the optimization greatly increases the computation cost, which is the main challenge of RADO. To alleviate this problem, an efficient robust RADO method based on a multi-level hierarchical Kriging (MHK) model and multi-fidelity expected improvement (MFEI) is proposed. A regularized multi-fidelity framework is established for RADO and a progressive multi-round multi-fidelity strategy is further developed to reduce the cost. The MHK surrogate is utilized for global optimization and UQ, which is constructed with very few high-fidelity simulations by taking advantage of cheap simulations of multiple lower fidelities. The MFEI can adaptively infill samples of arbitrary fidelity during the optimization to accelerate the convergence. The proposed RADO method is verified by drag minimization of RAE 2822 airfoil under operational uncertainties and then demonstrated by robust designs of a natural-laminal-flow airfoil NLF0416 at high lift under environmental uncertainty and ONERA M6 wing in transonic viscous flow under operational and geometric uncertainties. The results confirm that the proposed method significantly improves optimization efficiency and obtains robust aerodynamic design within an affordable computational budget. In contrast to the deterministic optimum, the robust configurations can retain a good performance when uncertainties exist.
AbstractList •A regularized multi-fidelity framework for robust aerodynamic design optimization is established.•MHK and MFEI are used simultaneously to improve the optimization efficiency.•A progressive multi-round multi-fidelity optimization strategy is developed for extremely expensive robust optimization.•Diverse and mixed uncertainties are considered in the robust aerodynamic design optimization of airfoil and wing configurations.•A complicated robust design optimization of M6 wing with 36 design variables and 10 stochastic variables (including geometric and operational uncertainties) is implemented, which verifies the proposed method. Robust aerodynamic design optimization (RADO) is developed to obtain aircraft designs with insensitive aerodynamic performance. The uncertainties in manufacturing, operating conditions, or freestream turbulence intensity are quantified and involved in the objective and constraint functions of RADO. The iterative uncertainty quantification (UQ) based on high-fidelity simulations for each design generated in the optimization greatly increases the computation cost, which is the main challenge of RADO. To alleviate this problem, an efficient robust RADO method based on a multi-level hierarchical Kriging (MHK) model and multi-fidelity expected improvement (MFEI) is proposed. A regularized multi-fidelity framework is established for RADO and a progressive multi-round multi-fidelity strategy is further developed to reduce the cost. The MHK surrogate is utilized for global optimization and UQ, which is constructed with very few high-fidelity simulations by taking advantage of cheap simulations of multiple lower fidelities. The MFEI can adaptively infill samples of arbitrary fidelity during the optimization to accelerate the convergence. The proposed RADO method is verified by drag minimization of RAE 2822 airfoil under operational uncertainties and then demonstrated by robust designs of a natural-laminal-flow airfoil NLF0416 at high lift under environmental uncertainty and ONERA M6 wing in transonic viscous flow under operational and geometric uncertainties. The results confirm that the proposed method significantly improves optimization efficiency and obtains robust aerodynamic design within an affordable computational budget. In contrast to the deterministic optimum, the robust configurations can retain a good performance when uncertainties exist.
ArticleNumber 109401
Author Song, Wen-ping
Zhang, Yu
Han, Zhong-hua
Author_xml – sequence: 1
  givenname: Yu
  orcidid: 0000-0003-2494-9379
  surname: Zhang
  fullname: Zhang, Yu
  email: zhangyu91@mail.nwpu.edu.cn
– sequence: 2
  givenname: Zhong-hua
  orcidid: 0000-0001-7942-1091
  surname: Han
  fullname: Han, Zhong-hua
– sequence: 3
  givenname: Wen-ping
  surname: Song
  fullname: Song, Wen-ping
BookMark eNp9kMlOAzEMhnMAifUBuOUFpmQyWyNOCLEJJC5wjrI4rauZpEpCRXkOHpiUcuLAyfplf5b9nZADHzwQclGzWc3q_nI1UynPOONtyaJl9QE5rvnAKtE38yNyktKKMcZFy4_J17Wn4BwaBJ9pDPo9ZaogBrv1akJDLSRceBrWGSf8VBmDpxPkZbBUqwSWlqzo9D5mrEbYwEiXCFFFs0SjRvoUcYF-QadgS0t5-zvqsGTMWwofazC57MFpHcMGpnLHGTl0akxw_ltPydvd7evNQ_X8cv94c_1cGS6GXEGrW8GbjptGa-OYdqJzgxBN080V1_O5bdq2Fnpgqu8abYXune1Np1TPemFZc0rq_V4TQ0oRnFxHnFTcyprJnUq5kkWl3KmUe5WFGf4wBvOPlhwVjv-SV3sSykubIkmmnXUDFmNRIG3Af-hvF_SWqA
CitedBy_id crossref_primary_10_1016_j_cma_2025_117952
crossref_primary_10_1080_19942060_2025_2528120
Cites_doi 10.1016/j.ast.2015.04.011
10.1016/j.ast.2023.108465
10.1016/j.paerosci.2008.11.001
10.2514/1.J056661
10.1016/j.ast.2021.106572
10.1007/s00158-021-02931-1
10.1016/j.cja.2020.01.015
10.1007/s00366-021-01404-9
10.2514/1.J051243
10.1007/s00158-022-03283-0
10.1016/j.ast.2017.06.009
10.1109/72.298229
10.1137/15M1046812
10.1016/j.cma.2016.10.042
10.1016/j.ast.2023.108725
10.1007/s00158-022-03484-7
10.1016/j.paerosci.2005.02.001
10.1093/biomet/87.1.1
10.1016/j.ast.2023.108854
10.1007/s00158-016-1546-7
10.1016/j.paerosci.2024.101007
10.1023/A:1008306431147
10.2514/1.J054128
10.2514/1.J060676
10.1016/j.ast.2023.108592
10.1016/j.cja.2019.05.001
10.2514/1.J058283
10.1016/j.ast.2022.107764
10.1016/j.paerosci.2011.05.001
10.1007/BF01061285
10.1007/s00158-018-1971-x
10.1016/j.energy.2023.128011
10.1016/j.ast.2012.01.006
10.1007/s00158-016-1550-y
10.2514/1.12466
10.1016/j.cma.2020.113632
10.1023/A:1012771025575
10.1007/s00158-020-02772-4
10.1146/annurev.fluid.010908.165248
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
DOI 10.1016/j.ast.2024.109401
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_ast_2024_109401
S1270963824005327
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHPGS
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
VH1
XPP
ZMT
~G-
9DU
AATTM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c297t-e4b492352c3bbcf0bf95f7993358a2b88d34419b70a653bd9b6fd6c5aa6069d03
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001283647800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1270-9638
IngestDate Sat Nov 29 02:39:56 EST 2025
Tue Nov 18 20:54:01 EST 2025
Sat Feb 08 15:52:20 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Uncertainty quantification
Robust aerodynamic design optimization
Multi-fidelity optimization
Aerodynamics
Surrogate model
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-e4b492352c3bbcf0bf95f7993358a2b88d34419b70a653bd9b6fd6c5aa6069d03
ORCID 0000-0003-2494-9379
0000-0001-7942-1091
ParticipantIDs crossref_primary_10_1016_j_ast_2024_109401
crossref_citationtrail_10_1016_j_ast_2024_109401
elsevier_sciencedirect_doi_10_1016_j_ast_2024_109401
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationTitle Aerospace science and technology
PublicationYear 2024
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
References Sabater, Le Maître, Congedo, Görtz (bib0022) 2021; 376
Zhang, Taflanidis, Medina (bib0021) 2017; 315
Han, Göertz, Zimmermann (bib0026) 2013; 25
Djeddi, Ekici (bib0046) 2024; 145
Zhang, Li, Dong, Zhang, Zhang, Lu (bib0008) 2023; 142
Jones, Schonlau, Welch (bib0016) 1998; 13
Lin, Gong, Zhang, Kou, Zhou (bib0040) 2022; 128
Cheng, Lin, Yi (bib0042) 2022; 65
Zhao, Gao, Xu, Zhang (bib0007) 2018; 26
Jameson (bib0002) 1988; 3
Chen, Rao, Xiong, Fan, Shi, Yang (bib0047) 2023; 140
Zhao, Gao, Gao (bib0048) 2017; 68
Najm (bib0011) 2009; 41
Leifsson, Koziel, Tesfahunegn (bib0027) 2016; 54
Jones (bib0017) 2001; 21
Sabater (bib0023) 2022
Huang, Liu, Zheng, Xu, Duan (bib0044) 2023; 66
Walters, Huyse (bib0005) 2002
Palar, Shimoyama (bib0032) 2017
Guo, Wang, Song, Li (bib0043) 2020; 64
Gano, Renaud, Sanders (bib0025) 2005; 43
He, Sun, Song, Wang (bib0036) 2021; 111
Cheng, Zhou, Lu, Zhao, Han, Yang (bib0020) 2023; 278
Liu, Song, Han, Zhang (bib0014) 2017; 55
Shah, Hosder, Koziel, Tesfahunegn, Leifsson (bib0028) 2015; 45
Han, Göertz (bib0031) 2012; 50
Han, Qiao, Zhang, Chen, Yang, Ding, Zhang, Song, Song (bib0034) 2024; 146
Liu, Han, Zhang, Song, Song, Gui, Tang (bib0015) 2019; 93
Antunes, Azevedo (bib0001) 2014; 51
Han, Chen, Zhang, Xu, Zhu, Song (bib0049) 2018; 56
Han, Zimmermann, Göertz (bib0030) 2012; 50
Queipo, Haftka, Shyy, Goel, Vaidyanathan, Tucker (bib0003) 2005; 41
Lin, Hu, Zhou (bib0039) 2023; 143
Kennedy, O'Hagan (bib0029) 2000; 87
Shu, Jiang, Wang (bib0038) 2021; 63
Sabater, Bekemeyer, Göertz (bib0010) 2021
Zhang, Han, Song (bib0045) 2024
Elanayar, Shin (bib0012) 1994; 5
Jiang, Cheng, Zhou, Shu, Hu (bib0041) 2019; 57
Park, Haftka, Kim (bib0024) 2017; 55
Han, Xu, Zhang, Zhang, Zhang (bib0033) 2020; 33
Sabater, Bekemeyer, Görtz (bib0018) 2022; 60
Tao, Sun, Guo, Wang (bib0019) 2020; 33
He, Sun, Song, Wang (bib0037) 2022; 38
Zhang, Han, Zhang (bib0035) 2018; 58
Sabater, Göertz (bib0009) 2019
Owen, Challenor, Menon, Bennani (bib0013) 2017; 5
Forrester, Keane (bib0004) 2009; 45
Yao, Chen, Luo, Tooren, Guo (bib0006) 2011; 47
Kennedy (10.1016/j.ast.2024.109401_bib0029) 2000; 87
Leifsson (10.1016/j.ast.2024.109401_bib0027) 2016; 54
Najm (10.1016/j.ast.2024.109401_bib0011) 2009; 41
Lin (10.1016/j.ast.2024.109401_bib0039) 2023; 143
Cheng (10.1016/j.ast.2024.109401_bib0020) 2023; 278
Shu (10.1016/j.ast.2024.109401_bib0038) 2021; 63
Han (10.1016/j.ast.2024.109401_bib0034) 2024; 146
Sabater (10.1016/j.ast.2024.109401_bib0010) 2021
Tao (10.1016/j.ast.2024.109401_bib0019) 2020; 33
Walters (10.1016/j.ast.2024.109401_bib0005) 2002
Han (10.1016/j.ast.2024.109401_bib0033) 2020; 33
Han (10.1016/j.ast.2024.109401_bib0031) 2012; 50
Sabater (10.1016/j.ast.2024.109401_bib0022) 2021; 376
Zhang (10.1016/j.ast.2024.109401_bib0035) 2018; 58
Djeddi (10.1016/j.ast.2024.109401_bib0046) 2024; 145
Liu (10.1016/j.ast.2024.109401_bib0015) 2019; 93
Sabater (10.1016/j.ast.2024.109401_bib0018) 2022; 60
Han (10.1016/j.ast.2024.109401_bib0030) 2012; 50
Zhang (10.1016/j.ast.2024.109401_bib0021) 2017; 315
Jones (10.1016/j.ast.2024.109401_bib0016) 1998; 13
Gano (10.1016/j.ast.2024.109401_bib0025) 2005; 43
Han (10.1016/j.ast.2024.109401_bib0026) 2013; 25
Queipo (10.1016/j.ast.2024.109401_bib0003) 2005; 41
Park (10.1016/j.ast.2024.109401_bib0024) 2017; 55
Zhang (10.1016/j.ast.2024.109401_bib0045) 2024
Yao (10.1016/j.ast.2024.109401_bib0006) 2011; 47
Jiang (10.1016/j.ast.2024.109401_bib0041) 2019; 57
He (10.1016/j.ast.2024.109401_bib0036) 2021; 111
Zhang (10.1016/j.ast.2024.109401_bib0008) 2023; 142
Antunes (10.1016/j.ast.2024.109401_bib0001) 2014; 51
Zhao (10.1016/j.ast.2024.109401_bib0007) 2018; 26
Guo (10.1016/j.ast.2024.109401_bib0043) 2020; 64
Zhao (10.1016/j.ast.2024.109401_bib0048) 2017; 68
Sabater (10.1016/j.ast.2024.109401_bib0009) 2019
Palar (10.1016/j.ast.2024.109401_bib0032) 2017
Huang (10.1016/j.ast.2024.109401_bib0044) 2023; 66
Liu (10.1016/j.ast.2024.109401_bib0014) 2017; 55
Forrester (10.1016/j.ast.2024.109401_bib0004) 2009; 45
Jameson (10.1016/j.ast.2024.109401_bib0002) 1988; 3
Sabater (10.1016/j.ast.2024.109401_bib0023) 2022
Cheng (10.1016/j.ast.2024.109401_bib0042) 2022; 65
He (10.1016/j.ast.2024.109401_bib0037) 2022; 38
Han (10.1016/j.ast.2024.109401_bib0049) 2018; 56
Lin (10.1016/j.ast.2024.109401_bib0040) 2022; 128
Elanayar (10.1016/j.ast.2024.109401_bib0012) 1994; 5
Jones (10.1016/j.ast.2024.109401_bib0017) 2001; 21
Shah (10.1016/j.ast.2024.109401_bib0028) 2015; 45
Chen (10.1016/j.ast.2024.109401_bib0047) 2023; 140
Owen (10.1016/j.ast.2024.109401_bib0013) 2017; 5
References_xml – volume: 140
  year: 2023
  ident: bib0047
  article-title: Adjoint-based robust optimization design of laminar flow airfoil under flight condition uncertainties
  publication-title: Aerosp. Sci. Technol.
– volume: 5
  start-page: 594­603
  year: 1994
  ident: bib0012
  article-title: Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems
  publication-title: IEEE Trans. Neural Netw.
– volume: 68
  start-page: 530­542
  year: 2017
  ident: bib0048
  article-title: Effective robust design of high lift NLF airfoil under multi­parameter uncertainty
  publication-title: Aerosp. Sci. Technol.
– volume: 54
  start-page: 531
  year: 2016
  end-page: 541
  ident: bib0027
  article-title: Multiobjective aerodynamic optimization by variable-fidelity models and response surface surrogates
  publication-title: AIAA J.
– volume: 55
  start-page: 925
  year: 2017
  end-page: 943
  ident: bib0014
  article-title: Efficient aerodynamic shape optimization of transonic wings using a parallel infilling strategy and surrogate models
  publication-title: Struct. Multidiscip. Optim.
– volume: 50
  start-page: 1205
  year: 2012
  end-page: 1210
  ident: bib0030
  article-title: An alternative cokriging model for variable fidelity surrogate modeling
  publication-title: AIAA J.
– volume: 21
  start-page: 345
  year: 2001
  end-page: 383
  ident: bib0017
  article-title: A taxonomy of global optimization methods based on response surfaces
  publication-title: J. Glob. Optim.
– volume: 55
  start-page: 1029
  year: 2017
  end-page: 1050
  ident: bib0024
  article-title: Remarks on multi-fidelity surrogates
  publication-title: Struct. Multidisc. Optim.
– start-page: 1
  year: 2024
  end-page: 23
  ident: bib0045
  article-title: Multi-fidelity expected improvement based on multi-level hierarchical kriging model for efficient aerodynamic design optimization
  publication-title: Eng. Optim.
– volume: 25
  year: 2013
  ident: bib0026
  article-title: Improving variable fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function
  publication-title: Aerosp. Sci. Technol.
– volume: 5
  start-page: 403­435
  year: 2017
  ident: bib0013
  article-title: Comparison of surrogate-based uncertainty quantification methods for computationally expensive simulators
  publication-title: SIAM/ASA J. Uncertain. Quantif.
– volume: 33
  start-page: 31
  year: 2020
  end-page: 47
  ident: bib0033
  article-title: Efficient aerodynamic shape optimization using variable fidelity surrogate models and multilevel computational grids
  publication-title: Chin. J. Aeronaut.
– year: 2002
  ident: bib0005
  article-title: Uncertainty Analysis For Fluid Mechanics With applications. NASA CR­2002­211449
– volume: 278
  year: 2023
  ident: bib0020
  article-title: Robust aerodynamic optimization and design exploration of a wide-chord transonic fan under geometric and operational uncertainties
  publication-title: Energy
– volume: 128
  year: 2022
  ident: bib0040
  article-title: A probability of improvement-based multi-fidelity robust optimization approach for aerospace products design
  publication-title: Aerosp. Sci. Technol.
– volume: 45
  start-page: 17
  year: 2015
  end-page: 29
  ident: bib0028
  article-title: Multi-fidelity robust aerodynamic design optimization under mixed uncertainty
  publication-title: Aerosp. Sci. Technol.
– volume: 60
  start-page: 677
  year: 2022
  end-page: 782
  ident: bib0018
  article-title: Robust design of transonic natural laminar flow wings under environmental and operational uncertainties
  publication-title: AIAA J.
– volume: 43
  start-page: 2422
  year: 2005
  end-page: 2430
  ident: bib0025
  article-title: Hybrid variable fidelity optimization by using a kriging-based scaling function
  publication-title: AIAA J.
– year: 2022
  ident: bib0023
  article-title: Development of Efficient Surrogate-Assisted Methods to Support Robust Design of Transonic Wings
– volume: 66
  start-page: 30
  year: 2023
  ident: bib0044
  article-title: A proportional expected improvement criterion-based multi-fidelity sequential optimization method
  publication-title: Struct. Multidiscip. Optim.
– volume: 50
  start-page: 1285
  year: 2012
  end-page: 1296
  ident: bib0031
  article-title: Hierarchical kriging model for variable fidelity surrogate modeling
  publication-title: AIAA J.
– volume: 376
  year: 2021
  ident: bib0022
  article-title: A Bayesian approach for quantile optimization problems with high-dimensional uncertainty sources
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 145
  year: 2024
  ident: bib0046
  article-title: Natural laminar flow airfoil design via adjoint-based transition onset delay
  publication-title: Aerosp. Sci. Technol.
– volume: 33
  start-page: 1573
  year: 2020
  end-page: 1588
  ident: bib0019
  article-title: Application of a PCA-DBN-based surrogate model to robust aerodynamic design optimization
  publication-title: Chin. J. Aeronaut.
– start-page: 0071
  year: 2021
  ident: bib0010
  article-title: Robust design of transonic natural laminar flow wings under environmental and operational uncertainties
  publication-title: Proceedings of the AIAA Scitech 2021 Forum
– volume: 143
  year: 2023
  ident: bib0039
  article-title: Parallel multi-objective Bayesian optimization approaches based on multi-fidelity surrogate modeling
  publication-title: Aerosp. Sci. Technol.
– volume: 56
  year: 2018
  ident: bib0049
  article-title: Aerodynamic shape optimization of natural-laminar-flow wing using surrogate-based approach
  publication-title: AIAA J.
– start-page: 3261
  year: 2017
  ident: bib0032
  article-title: Multi-fidelity uncertainty analysis in CFD using hierarchical kriging
  publication-title: Proceedings of the 35th AIAA Applied Aerodynamics Conference
– volume: 45
  start-page: 50
  year: 2009
  end-page: 79
  ident: bib0004
  article-title: Recent advances in surrogate-based optimization
  publication-title: Prog. Aerosp. Sci.
– volume: 315
  start-page: 369
  year: 2017
  end-page: 395
  ident: bib0021
  article-title: Sequential approximate optimization for design under uncertainty problems utilizing kriging metamodeling in augmented input space
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 111
  year: 2021
  ident: bib0036
  article-title: Variable-fidelity expected improvement based efficient global optimization of expensive problems in presence of simulation failures and its parallelization
  publication-title: Aerosp. Sci. Technol.
– volume: 47
  start-page: 450­479
  year: 2011
  ident: bib0006
  article-title: Review of uncertainty­based multidisciplinary design optimization methods for aerospace vehicles
  publication-title: Prog. Aerosp. Sci.
– volume: 38
  start-page: 3663
  year: 2022
  end-page: 3689
  ident: bib0037
  article-title: Variable-fidelity hypervolume-based expected improvement criteria for multi-objective efficient global optimization of expensive functions
  publication-title: Eng. Compos.
– volume: 58
  start-page: 1431
  year: 2018
  end-page: 1451
  ident: bib0035
  article-title: Variable fidelity expected improvement method for efficient global optimization of expensive functions
  publication-title: Struct. Multidiscip. Optim.
– volume: 57
  start-page: 5416
  year: 2019
  end-page: 5430
  ident: bib0041
  article-title: Variable-fidelity lower confidence bounding approach for engineering optimization problems with expensive simulations
  publication-title: AIAA J.
– volume: 64
  start-page: 1457
  year: 2020
  end-page: 1468
  ident: bib0043
  article-title: Parallel multi-fidelity expected improvement method for efficient global optimization
  publication-title: Struct. Multidiscip. Optim.
– volume: 65
  start-page: 188
  year: 2022
  ident: bib0042
  article-title: An enhanced variable‑fidelity optimization approach for constrained optimization problems and its parallelization
  publication-title: Struct. Multidiscip. Optim.
– volume: 3
  start-page: 233
  year: 1988
  end-page: 260
  ident: bib0002
  article-title: Aerodynamic design via control theory
  publication-title: J. Sci. Comput.
– volume: 26
  start-page: 685
  year: 2018
  end-page: 732
  ident: bib0007
  article-title: Review of robust aerodynamic design optimization for air vehicles
  publication-title: Arch. Comput. Methods Eng.
– volume: 93
  year: 2019
  ident: bib0015
  article-title: Surrogate-based aerodynamic shape optimization of hypersonic flows considering transonic performance
  publication-title: Aerosp. Sci. Technol.
– volume: 13
  start-page: 455
  year: 1998
  end-page: 492
  ident: bib0016
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Glob. Optim.
– volume: 146
  year: 2024
  ident: bib0034
  article-title: Recent progress of efficient low-boom design and optimization methods
  publication-title: Prog. Aerosp. Sci.
– volume: 51
  start-page: 1002
  year: 2014
  end-page: 1012
  ident: bib0001
  article-title: Studies in aerodynamic optimization based on genetic algorithms
  publication-title: AIAA J.
– volume: 63
  start-page: 1709
  year: 2021
  end-page: 1719
  ident: bib0038
  article-title: A multi-fidelity Bayesian optimization approach based on the expected further improvement
  publication-title: Struct. Multidiscip. Optim.
– volume: 41
  start-page: 35­52
  year: 2009
  ident: bib0011
  article-title: Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics
  publication-title: Annu. Rev. Fluid Mech.
– volume: 142
  year: 2023
  ident: bib0008
  article-title: A discrete adjoint framework coupled with adaptive PCE for robust aerodynamic optimization of turbomachinery under flow uncertainty
  publication-title: Aerosp. Sci. Technol.
– volume: 41
  start-page: 1
  year: 2005
  end-page: 28
  ident: bib0003
  article-title: Surrogate-based analysis and optimization
  publication-title: Prog. Aerosp. Sci.
– start-page: 2214
  year: 2019
  ident: bib0009
  article-title: An efficient bi-level surrogate approach for optimizing shock control bumps under uncertainty
  publication-title: Proceedings of the AIAA Scitech 2019 Forum
– volume: 87
  start-page: 113
  year: 2000
  ident: bib0029
  article-title: Predicting the output from a complex computer code when fast approximations are available
  publication-title: Biometrika
– start-page: 2214
  year: 2019
  ident: 10.1016/j.ast.2024.109401_bib0009
  article-title: An efficient bi-level surrogate approach for optimizing shock control bumps under uncertainty
– volume: 45
  start-page: 17
  year: 2015
  ident: 10.1016/j.ast.2024.109401_bib0028
  article-title: Multi-fidelity robust aerodynamic design optimization under mixed uncertainty
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2015.04.011
– volume: 140
  year: 2023
  ident: 10.1016/j.ast.2024.109401_bib0047
  article-title: Adjoint-based robust optimization design of laminar flow airfoil under flight condition uncertainties
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2023.108465
– volume: 45
  start-page: 50
  issue: 1–3
  year: 2009
  ident: 10.1016/j.ast.2024.109401_bib0004
  article-title: Recent advances in surrogate-based optimization
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2008.11.001
– volume: 56
  issue: 7
  year: 2018
  ident: 10.1016/j.ast.2024.109401_bib0049
  article-title: Aerodynamic shape optimization of natural-laminar-flow wing using surrogate-based approach
  publication-title: AIAA J.
  doi: 10.2514/1.J056661
– volume: 111
  year: 2021
  ident: 10.1016/j.ast.2024.109401_bib0036
  article-title: Variable-fidelity expected improvement based efficient global optimization of expensive problems in presence of simulation failures and its parallelization
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2021.106572
– volume: 64
  start-page: 1457
  year: 2020
  ident: 10.1016/j.ast.2024.109401_bib0043
  article-title: Parallel multi-fidelity expected improvement method for efficient global optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-021-02931-1
– volume: 33
  start-page: 1573
  issue: 6
  year: 2020
  ident: 10.1016/j.ast.2024.109401_bib0019
  article-title: Application of a PCA-DBN-based surrogate model to robust aerodynamic design optimization
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2020.01.015
– volume: 38
  start-page: 3663
  year: 2022
  ident: 10.1016/j.ast.2024.109401_bib0037
  article-title: Variable-fidelity hypervolume-based expected improvement criteria for multi-objective efficient global optimization of expensive functions
  publication-title: Eng. Compos.
  doi: 10.1007/s00366-021-01404-9
– volume: 50
  start-page: 1285
  issue: 5
  year: 2012
  ident: 10.1016/j.ast.2024.109401_bib0031
  article-title: Hierarchical kriging model for variable fidelity surrogate modeling
  publication-title: AIAA J.
  doi: 10.2514/1.J051243
– volume: 65
  start-page: 188
  year: 2022
  ident: 10.1016/j.ast.2024.109401_bib0042
  article-title: An enhanced variable‑fidelity optimization approach for constrained optimization problems and its parallelization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-022-03283-0
– volume: 68
  start-page: 530­542
  year: 2017
  ident: 10.1016/j.ast.2024.109401_bib0048
  article-title: Effective robust design of high lift NLF airfoil under multi­parameter uncertainty
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2017.06.009
– volume: 5
  start-page: 594­603
  issue: 4
  year: 1994
  ident: 10.1016/j.ast.2024.109401_bib0012
  article-title: Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.298229
– volume: 5
  start-page: 403­435
  issue: 1
  year: 2017
  ident: 10.1016/j.ast.2024.109401_bib0013
  article-title: Comparison of surrogate-based uncertainty quantification methods for computationally expensive simulators
  publication-title: SIAM/ASA J. Uncertain. Quantif.
  doi: 10.1137/15M1046812
– volume: 315
  start-page: 369
  year: 2017
  ident: 10.1016/j.ast.2024.109401_bib0021
  article-title: Sequential approximate optimization for design under uncertainty problems utilizing kriging metamodeling in augmented input space
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2016.10.042
– volume: 143
  year: 2023
  ident: 10.1016/j.ast.2024.109401_bib0039
  article-title: Parallel multi-objective Bayesian optimization approaches based on multi-fidelity surrogate modeling
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2023.108725
– volume: 66
  start-page: 30
  year: 2023
  ident: 10.1016/j.ast.2024.109401_bib0044
  article-title: A proportional expected improvement criterion-based multi-fidelity sequential optimization method
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-022-03484-7
– volume: 41
  start-page: 1
  year: 2005
  ident: 10.1016/j.ast.2024.109401_bib0003
  article-title: Surrogate-based analysis and optimization
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2005.02.001
– volume: 87
  start-page: 113
  issue: 1
  year: 2000
  ident: 10.1016/j.ast.2024.109401_bib0029
  article-title: Predicting the output from a complex computer code when fast approximations are available
  publication-title: Biometrika
  doi: 10.1093/biomet/87.1.1
– volume: 145
  year: 2024
  ident: 10.1016/j.ast.2024.109401_bib0046
  article-title: Natural laminar flow airfoil design via adjoint-based transition onset delay
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2023.108854
– volume: 55
  start-page: 925
  issue: 3
  year: 2017
  ident: 10.1016/j.ast.2024.109401_bib0014
  article-title: Efficient aerodynamic shape optimization of transonic wings using a parallel infilling strategy and surrogate models
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-016-1546-7
– volume: 146
  year: 2024
  ident: 10.1016/j.ast.2024.109401_bib0034
  article-title: Recent progress of efficient low-boom design and optimization methods
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2024.101007
– volume: 93
  issue: 10
  year: 2019
  ident: 10.1016/j.ast.2024.109401_bib0015
  article-title: Surrogate-based aerodynamic shape optimization of hypersonic flows considering transonic performance
  publication-title: Aerosp. Sci. Technol.
– volume: 13
  start-page: 455
  issue: 4
  year: 1998
  ident: 10.1016/j.ast.2024.109401_bib0016
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008306431147
– volume: 54
  start-page: 531
  issue: 2
  year: 2016
  ident: 10.1016/j.ast.2024.109401_bib0027
  article-title: Multiobjective aerodynamic optimization by variable-fidelity models and response surface surrogates
  publication-title: AIAA J.
  doi: 10.2514/1.J054128
– start-page: 0071
  year: 2021
  ident: 10.1016/j.ast.2024.109401_bib0010
  article-title: Robust design of transonic natural laminar flow wings under environmental and operational uncertainties
– year: 2002
  ident: 10.1016/j.ast.2024.109401_bib0005
– volume: 60
  start-page: 677
  issue: 2
  year: 2022
  ident: 10.1016/j.ast.2024.109401_bib0018
  article-title: Robust design of transonic natural laminar flow wings under environmental and operational uncertainties
  publication-title: AIAA J.
  doi: 10.2514/1.J060676
– volume: 51
  start-page: 1002
  issue: 3
  year: 2014
  ident: 10.1016/j.ast.2024.109401_bib0001
  article-title: Studies in aerodynamic optimization based on genetic algorithms
  publication-title: AIAA J.
– volume: 142
  year: 2023
  ident: 10.1016/j.ast.2024.109401_bib0008
  article-title: A discrete adjoint framework coupled with adaptive PCE for robust aerodynamic optimization of turbomachinery under flow uncertainty
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2023.108592
– start-page: 3261
  year: 2017
  ident: 10.1016/j.ast.2024.109401_bib0032
  article-title: Multi-fidelity uncertainty analysis in CFD using hierarchical kriging
– volume: 33
  start-page: 31
  issue: 1
  year: 2020
  ident: 10.1016/j.ast.2024.109401_bib0033
  article-title: Efficient aerodynamic shape optimization using variable fidelity surrogate models and multilevel computational grids
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2019.05.001
– volume: 57
  start-page: 5416
  year: 2019
  ident: 10.1016/j.ast.2024.109401_bib0041
  article-title: Variable-fidelity lower confidence bounding approach for engineering optimization problems with expensive simulations
  publication-title: AIAA J.
  doi: 10.2514/1.J058283
– volume: 26
  start-page: 685
  year: 2018
  ident: 10.1016/j.ast.2024.109401_bib0007
  article-title: Review of robust aerodynamic design optimization for air vehicles
  publication-title: Arch. Comput. Methods Eng.
– volume: 128
  year: 2022
  ident: 10.1016/j.ast.2024.109401_bib0040
  article-title: A probability of improvement-based multi-fidelity robust optimization approach for aerospace products design
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2022.107764
– volume: 47
  start-page: 450­479
  issue: 6
  year: 2011
  ident: 10.1016/j.ast.2024.109401_bib0006
  article-title: Review of uncertainty­based multidisciplinary design optimization methods for aerospace vehicles
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2011.05.001
– volume: 3
  start-page: 233
  issue: 3
  year: 1988
  ident: 10.1016/j.ast.2024.109401_bib0002
  article-title: Aerodynamic design via control theory
  publication-title: J. Sci. Comput.
  doi: 10.1007/BF01061285
– volume: 58
  start-page: 1431
  issue: 4
  year: 2018
  ident: 10.1016/j.ast.2024.109401_bib0035
  article-title: Variable fidelity expected improvement method for efficient global optimization of expensive functions
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-018-1971-x
– volume: 278
  year: 2023
  ident: 10.1016/j.ast.2024.109401_bib0020
  article-title: Robust aerodynamic optimization and design exploration of a wide-chord transonic fan under geometric and operational uncertainties
  publication-title: Energy
  doi: 10.1016/j.energy.2023.128011
– volume: 25
  issue: 1
  year: 2013
  ident: 10.1016/j.ast.2024.109401_bib0026
  article-title: Improving variable fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2012.01.006
– volume: 55
  start-page: 1029
  issue: 3
  year: 2017
  ident: 10.1016/j.ast.2024.109401_bib0024
  article-title: Remarks on multi-fidelity surrogates
  publication-title: Struct. Multidisc. Optim.
  doi: 10.1007/s00158-016-1550-y
– volume: 43
  start-page: 2422
  issue: 11
  year: 2005
  ident: 10.1016/j.ast.2024.109401_bib0025
  article-title: Hybrid variable fidelity optimization by using a kriging-based scaling function
  publication-title: AIAA J.
  doi: 10.2514/1.12466
– volume: 376
  year: 2021
  ident: 10.1016/j.ast.2024.109401_bib0022
  article-title: A Bayesian approach for quantile optimization problems with high-dimensional uncertainty sources
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113632
– volume: 21
  start-page: 345
  issue: 4
  year: 2001
  ident: 10.1016/j.ast.2024.109401_bib0017
  article-title: A taxonomy of global optimization methods based on response surfaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1012771025575
– start-page: 1
  year: 2024
  ident: 10.1016/j.ast.2024.109401_bib0045
  article-title: Multi-fidelity expected improvement based on multi-level hierarchical kriging model for efficient aerodynamic design optimization
  publication-title: Eng. Optim.
– year: 2022
  ident: 10.1016/j.ast.2024.109401_bib0023
– volume: 63
  start-page: 1709
  year: 2021
  ident: 10.1016/j.ast.2024.109401_bib0038
  article-title: A multi-fidelity Bayesian optimization approach based on the expected further improvement
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-020-02772-4
– volume: 41
  start-page: 35­52
  year: 2009
  ident: 10.1016/j.ast.2024.109401_bib0011
  article-title: Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.010908.165248
– volume: 50
  start-page: 1205
  issue: 5
  year: 2012
  ident: 10.1016/j.ast.2024.109401_bib0030
  article-title: An alternative cokriging model for variable fidelity surrogate modeling
  publication-title: AIAA J.
  doi: 10.2514/1.J051243
SSID ssj0002942
Score 2.3887918
Snippet •A regularized multi-fidelity framework for robust aerodynamic design optimization is established.•MHK and MFEI are used simultaneously to improve the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109401
SubjectTerms Aerodynamics
Multi-fidelity optimization
Robust aerodynamic design optimization
Surrogate model
Uncertainty quantification
Title An efficient robust aerodynamic design optimization method based on a multi-level hierarchical Kriging model and multi-fidelity expected improvement
URI https://dx.doi.org/10.1016/j.ast.2024.109401
Volume 152
WOSCitedRecordID wos001283647800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1270-9638
  databaseCode: AIEXJ
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002942
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcKp6iFJAPnIiCss7D8TFCRTwrpC2wcIn8SNqtluxqH1X_And-MDO2k81SQIDEJdqNYifKfJkZj7-ZIeSxYinYiWEWCqNggTKE5U5uhiqMc5Op2kQ1t7lVH97wo6N8PBbvBoOvbS7M-ZQ3TX5xIeb_VdRwDoSNqbN_Ie5uUjgBv0HocASxw_GPBF80SNKY2ETHYDFT6-UqkBXoSdd7PjCWsxHMQFd88UmYvo90gCbN4PaBdETDcIqUogDbZdsNB5Tna9tJ68S10LFbD-7SGutloUuPPQM0-rETG6_YUGvaWrfwLKDGsLSt1yuWxHkpxN-Fsj-tN2rS6sjPp7PmJDxddxZl5HnFH6smnLe22IcyWNJxtXx8rc2xeQvrBtSWxainmRmPQtQWW6rbVb-9ZAZcROLsqVwiXZYlWDQr8Xfarq49wnlxWuTSpjHjV8gu46kABblbvDwcv-rMOhO2E1P3HO0WuSUL_nCjnzs5Pcfl-AbZ8ysOWjik3CSDqrlFrvfqUN4m34qGdpihDjO0hxnqMEP7mKEOM9RihsJ_SXuYoX3MUI8ZajFDQdx0GzO0xQztYeYOef_88PjZi9C36wg1E3wVVonCan8p07FSuo5ULdKag_8bp7lkKs9NDL63UDySWRorI1RWm0ynUsIiWpgovkt2mllT3SM0iWJWqVhXkZSJzrlMmUxVxqTKTKy52SdR-35L7WvZY0uVadmSFs9KEEmJIimdSPbJk27I3BVy-d3FSSu00n8LzsMsAWG_Hnb_34YdkGubr-EB2Vkt1tVDclWfrybLxSOPw-9_zbUu
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+robust+aerodynamic+design+optimization+method+based+on+a+multi-level+hierarchical+Kriging+model+and+multi-fidelity+expected+improvement&rft.jtitle=Aerospace+science+and+technology&rft.au=Zhang%2C+Yu&rft.au=Han%2C+Zhong-hua&rft.au=Song%2C+Wen-ping&rft.date=2024-09-01&rft.pub=Elsevier+Masson+SAS&rft.issn=1270-9638&rft.volume=152&rft_id=info:doi/10.1016%2Fj.ast.2024.109401&rft.externalDocID=S1270963824005327
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1270-9638&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1270-9638&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1270-9638&client=summon