Complexity of interior-point methods for linear optimization based on a new trigonometric kernel function

In this paper, we propose a new kernel function with trigonometric barrier term for primal–dual interior point methods in linear optimization. Using an elegant and simple analysis and under some easy to check conditions, we explore the worst case complexity result for the large update primal–dual in...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of computational and applied mathematics Ročník 255; s. 74 - 85
Hlavní autori: Peyghami, M. Reza, Hafshejani, S. Fathi, Shirvani, L.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.01.2014
Predmet:
ISSN:0377-0427, 1879-1778
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we propose a new kernel function with trigonometric barrier term for primal–dual interior point methods in linear optimization. Using an elegant and simple analysis and under some easy to check conditions, we explore the worst case complexity result for the large update primal–dual interior point methods. We obtain the worst case iteration bound for the large update primal–dual interior point methods as O(n23lognϵ) which improves the so far obtained complexity results for the trigonometric kernel function in [M. El Ghami, Z.A. Guennoun, S. Boula, T. Steihaug, Interior-point methods for linear optimization based on a kernel function with a trigonometric barrier term, Journal of Computational and Applied Mathematics 236 (2012) 3613–3623] significantly.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2013.04.039