Complexity of interior-point methods for linear optimization based on a new trigonometric kernel function

In this paper, we propose a new kernel function with trigonometric barrier term for primal–dual interior point methods in linear optimization. Using an elegant and simple analysis and under some easy to check conditions, we explore the worst case complexity result for the large update primal–dual in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics Jg. 255; S. 74 - 85
Hauptverfasser: Peyghami, M. Reza, Hafshejani, S. Fathi, Shirvani, L.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.01.2014
Schlagworte:
ISSN:0377-0427, 1879-1778
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a new kernel function with trigonometric barrier term for primal–dual interior point methods in linear optimization. Using an elegant and simple analysis and under some easy to check conditions, we explore the worst case complexity result for the large update primal–dual interior point methods. We obtain the worst case iteration bound for the large update primal–dual interior point methods as O(n23lognϵ) which improves the so far obtained complexity results for the trigonometric kernel function in [M. El Ghami, Z.A. Guennoun, S. Boula, T. Steihaug, Interior-point methods for linear optimization based on a kernel function with a trigonometric barrier term, Journal of Computational and Applied Mathematics 236 (2012) 3613–3623] significantly.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2013.04.039