A modular algorithm to compute the generalized Hermite normal form for Z[x]-lattices

In this paper, a modular algorithm is given to compute the generalized Hermite normal form of matrices over Z[x], or equivalently, the reduced Gröbner basis of Z[x]-modules in Z[x]n. The main advantage of the algorithm is that the special structure of the Gröbner basis of ideals in Z[x] is taken int...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of symbolic computation Ročník 81; s. 97 - 118
Hlavní autori: Jing, Rui-Juan, Yuan, Chun-Ming
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.07.2017
Predmet:
ISSN:0747-7171, 1095-855X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, a modular algorithm is given to compute the generalized Hermite normal form of matrices over Z[x], or equivalently, the reduced Gröbner basis of Z[x]-modules in Z[x]n. The main advantage of the algorithm is that the special structure of the Gröbner basis of ideals in Z[x] is taken into consideration. The algorithm is deterministic and seems to be the most efficient available algorithm for inputs with relatively low degrees.
ISSN:0747-7171
1095-855X
DOI:10.1016/j.jsc.2016.12.005