A modular algorithm to compute the generalized Hermite normal form for Z[x]-lattices
In this paper, a modular algorithm is given to compute the generalized Hermite normal form of matrices over Z[x], or equivalently, the reduced Gröbner basis of Z[x]-modules in Z[x]n. The main advantage of the algorithm is that the special structure of the Gröbner basis of ideals in Z[x] is taken int...
Uložené v:
| Vydané v: | Journal of symbolic computation Ročník 81; s. 97 - 118 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.07.2017
|
| Predmet: | |
| ISSN: | 0747-7171, 1095-855X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, a modular algorithm is given to compute the generalized Hermite normal form of matrices over Z[x], or equivalently, the reduced Gröbner basis of Z[x]-modules in Z[x]n. The main advantage of the algorithm is that the special structure of the Gröbner basis of ideals in Z[x] is taken into consideration. The algorithm is deterministic and seems to be the most efficient available algorithm for inputs with relatively low degrees. |
|---|---|
| ISSN: | 0747-7171 1095-855X |
| DOI: | 10.1016/j.jsc.2016.12.005 |